7,587 research outputs found
Chern-Simons flows on Aloff-Wallach spaces and Spin(7)-instantons
Due to their explicit construction, Aloff-Wallach spaces are prominent in
flux compactifications. They carry G_2-structures and admit the G_2-instanton
equations, which are natural BPS equations for Yang-Mills instantons on
seven-manifolds and extremize a Chern-Simons-type functional. We consider the
Chern-Simons flow between different G_2-instantons on Aloff-Wallach spaces,
which is equivalent to Spin(7)-instantons on a cylinder over them. For a
general SU(3)-equivariant gauge connection, the generalized instanton equations
turn into gradient-flow equations on C^3 x R^2, with a particular cubic
superpotential. For the simplest member of the Aloff-Wallach family (with
3-Sasakian structure) we present an explicit instanton solution of tanh-like
shape.Comment: 1+17 pages, 1 figur
Supermembrane limit of Yang-Mills theory
We consider Yang-Mills theory with super translation group in eleven
auxiliary dimensions as the structure group. The gauge theory is defined on a
direct product manifold , where is a
three-dimensional Lorentzian manifold and is a circle. We show that in
the infrared limit, when the metric on is scaled down, the Yang-Mills
action supplemented by a Wess-Zumino-type term reduces to the action of an
M2-brane.Comment: 1+6 page
Enhanced four-wave mixing via elimination of inhomogeneous broadening by coherent driving of quantum transition with control fields
We show that atoms from wide velocity interval can be concurrently involved
in Doppler-free two-photon resonant far from frequency degenerate four-wave
mixing with the aid of auxiliary electromagnetic field. This gives rise to
substantial enhancement of the output radiation generated in optically thick
medium. Numerical illustrations addressed to typical experimental conditions
are given.Comment: LaTeX2e, hyperref, 7 pages, 5 figures, to appear in PRA 1 august 200
Transformation of amorphous carbon clusters to fullerenes
Transformation of amorphous carbon clusters into fullerenes under high
temperature is studied using molecular dynamics simulations at microsecond
times. Based on the analysis of both structure and energy of the system, it is
found that fullerene formation occurs in two stages. Firstly, fast
transformation of the initial amorphous structure into a hollow sp shell
with a few chains attached occurs with a considerable decrease of the potential
energy and the number of atoms belonging to chains and to the amorphous domain.
Then, insertion of remaining carbon chains into the sp network takes place
at the same time with the fullerene shell formation. Two types of defects
remaining after the formation of the fullerene shell are revealed: 7-membered
rings and single one-coordinated atoms. One of the fullerene structures
obtained contains no defects at all, which demonstrates that defect-free carbon
cages can be occasionally formed from amorphous precursors directly without
defect healing. No structural changes are observed after the fullerene
formation, suggesting that defect healing is a slow process in comparison with
the fullerene shell formation. The schemes of the revealed reactions of chain
atoms insertion into the fullerene shell just before its completion are
presented. The results of the performed simulations are summarized within the
paradigm of fullerene formation due to selforganization of the carbon system.Comment: 35 pages, 9 figure
Formation of nickel-carbon heterofullerenes under electron irradiation
arXiv.-- et al.A way to produce new metal-carbon nanoobjects by transformation of a graphene flake with an attached transition metal cluster under electron irradiation is proposed. The transformation process is investigated by molecular dynamics simulations by the example of a graphene flake with a nickel cluster. The parameters of the nickel-carbon potential (I. V. Lebedeva et al., J. Phys. Chem. C, 2012, 116, 6572) are modified to improve the description of the balance between the fullerene elastic energy and graphene edge energies in this process. The metal-carbon nanoobjects formed are found to range from heterofullerenes with a metal patch to particles consisting of closed fullerene and metal clusters linked by chemical bonds. The atomic-scale transformation mechanism is revealed by the local structure analysis. The average time of formation of nanoobjects and their lifetime under electron irradiation are estimated for the experimental conditions of high-resolution transmission electron microscopy (HRTEM). The sequence of images of nanostructure evolution with time during its observation by HRTEM is also modelled. Furthermore, the possibility of batch production of studied metal-carbon nanoobjects and solids based on these nanoobjects is discussed.AS, IL, AK and AP acknowledges Russian Foundation of Basic Research (14-02-00739-a). AP acknowledges Samsung Global Research Outreach Program. IL acknowledges support from the Marie Curie International Incoming Fellowship within the
7th European Community Framework Programme (Grant Agreement PIIF-GA-2012-326435 RespSpatDisp), Grupos Consolidados del Gobierno Vasco (IT-578-13) and the computational time on the Supercomputing Center of Lomonosov
Moscow State University and the Multipurpose Computing Complex NRC “Kurchatov Institute.” EB acknowledges EPSRC Career Acceleration Fellowship, New Directions for
EPSRC Research Leaders Award (EP/G005060), and ERC Starting Grant for financial support.Peer Reviewe
New Perturbation Theory for Nonstationary Anharmonic Oscillator
The new perturbation theory for the problem of nonstationary anharmonic
oscillator with polynomial nonstationary perturbation is proposed. As a zero
order approximation the exact wave function of harmonic oscillator with
variable frequency in external field is used. Based on some intrinsic
properties of unperturbed wave function the variational-iterational method is
proposed, that make it possible to correct both the amplitude and the phase of
wave function. As an application the first order correction are proposed both
for wave function and S-matrix elements for asymmetric perturbation potential
of type The transition amplitude
''ground state - ground state'' is analyzed in detail
depending on perturbation parameter (including strong coupling
region ) and one-dimensional refraction coefficient .Comment: LaTeX, 13 page
String theories as the adiabatic limit of Yang-Mills theory
We consider Yang-Mills theory with a matrix gauge group on a direct
product manifold , where is a two-dimensional
Lorentzian manifold and is a two-dimensional open disc with the boundary
. The Euler-Lagrange equations for the metric on
yield constraint equations for the Yang-Mills energy-momentum tensor. We show
that in the adiabatic limit, when the metric on is scaled down, the
Yang-Mills equations plus constraints on the energy-momentum tensor become the
equations describing strings with a worldsheet moving in the based
loop group , where is the boundary of
. By choosing and putting to zero all parameters in besides , we get a string moving in . In
arXiv:1506.02175 it was described how one can obtain the Green-Schwarz
superstring action from Yang-Mills theory on while
shrinks to a point. Here we also consider Yang-Mills theory on a
three-dimensional manifold and show that in the limit when
the radius of tends to zero, the Yang-Mills action functional
supplemented by a Wess-Zumino-type term becomes the Green-Schwarz superstring
action.Comment: 11 pages, v3: clarifying remarks added, new section on embedding of
the Green-Schwarz superstring into d=3 Yang-Mills theory include
- …