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Chern-Simons flows on Aloff-Wallach spaces and spin(7) instantons
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Because of their explicit construction, Aloff-Wallach spaces are prominent in flux compactifications.
They carry G, structures and admit the G,-instanton equations, which are natural Bogomol’nyi-Prasad-
Sommerfeld equations for Yang-Mills instantons on seven-manifolds and extremize a Chern-Simons—type
functional. We consider the Chern-Simons flow between different G, instantons on Aloff-Wallach spaces,
which is equivalent to spin(7) instantons on a cylinder over them. For a general SU(3)-equivariant gauge
connection, the generalized instanton equations turn into gradient-flow equations on C* X R?, with a

particular cubic superpotential. For the simplest member of the Aloff-Wallach family (with 3-Sasakian
structure) we present an explicit instanton solution of tanh-like shape.
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I. INTRODUCTION AND SUMMARY

Yang-Mills theory in more than four dimensions natu-
rally appears in the low-energy limit of superstring theory
in the presence of D-branes. Also, heterotic strings yield
heterotic supergravity, which contains supersymmetric
Yang-Mills theory as a subsector [1]. Furthermore, natural
Bogomol’'nyi-Prasad-Sommerfield—type equations for
gauge fields in dimension d > 4, introduced in [2], also
appear in superstring compactifications on spacetimes
Mo, X X? as the condition for the survival of at least
one supersymmetry in the low-energy effective field theory
on Mjy_, [1]. These first-order Bogomol nyi-Prasad-
Sommerfield-type equations on X¢, which generalize
four-dimensional ~ Yang-Mills anti-self-duality, were
considered e.g. in [3-9], and some of their solutions were
found in [10-13].

In string/M-theory compactification, the most interest-
ing dimensions seem to be d = 6, 7 or 8, and the corre-
sponding generalized anti-self-duality equations are,
respectively, called the Hermitian-Yang-Mills equations
[4], the G,-instanton equations [8,14], or the spin(7)-
instanton equations [8,15]. Most work on the above-
mentioned instanton equations has restricted its attention
to Riemannian manifolds X¢ with holonomy group SU(3)
for d =6, G, for d =7, or spin(7) for d =8, i.e. to
integrable G structures. However, if one is interested in
string compactification with fluxes [16], one should con-
sider nonintegrable G structures (weak holonomy groups)
instead. The torsion of the G structure, which measures the
failure to be integrable, is identified with the three-form
field (“flux’’) of supergravity. Flux compactifications have
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been investigated primarily for type II strings and
M theory, but also in the heterotic theories, albeit to a
lesser extent, despite their long history [17]. In particular,
compactifications on Aloff-Wallach spaces [18,19] X, ; of
dimension seven and cones C(X; ;) over them were studied
e.g. in [20-22]. The Yang-Mills equations on spin(7) mani-
folds of topology R X X;; with cylindrical and conical
metric are the subject of the present paper.

For any coprime pair of integers (k, [), the Aloff-Wallach
space X;; is the coset SU(3)/U(1),; with U(l),;, =
{diag(e’ktDe ¢=ike o=ileyl  [18,19]. It carries a
G, structure defined by a torsion three-form ¢ with the
property that di¢ is proportional to the Hodge-dual four-
form #i. G, instantons extremize a Chern-Simons—type
action functional on X, ;. As an example, we describe the
Abelian canonical connection on a line bundle over X, ;.
Next, we step up to eight dimensions via extending X, ; by
a real line R. Our G, instantons are the end points of a
gradient flow along this line, which is described precisely
by the spin(7)-instanton equations [8] on R X X, ;. The
most general SU(3)-equivariant connection on a rank-3
complex vector bundle is parametrized by three complex
and two real functions on R. The spin(7)-instanton equa-
tions reduce to gradient-flow equations for these functions,
governed by a cubic superpotential W with global U(1) X
U(1) symmetry. Interestingly, each function obeys a linear
equation in the background of the others.

In order to be more explicit, we specialize to the case of
k = 1= 1. We fix the metric moduli (up to a freedom of
orientation) such that X;; is 3-Sasakian and C(X, ) is
hyper-Kéhler, i.e. its structure group reduces to Sp(2).
We list all critical points and their Hessians and numeri-
cally find an instanton solution whose shape is close to the
tanh function. The corresponding gauge configuration in-
terpolates between different G, instantons on X ;. It is not
obvious how to establish the existence of further instanton
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solutions. It would be interesting to extend and lift
spin(7) instantons on a cylinder or a cone over Aloft-
Wallach spaces to classical solutions of heterotic M theory.

II. ALOFF-WALLACH SPACES

Group SU(3).—Consider the group SU(3) with genera-
tors {I,, I,},a=1,...,6,i =17, 8, satisfying

(L Ip)=f 0+ il (11 ])=f010,  [1,1]1=0,
2.1
where the structure constants are
5 5 — 6 _ 1 7 _ g |
f13_f42_f41_f32__ﬁ§’ 12_f34_ﬁ§’
1 1
f55:_ﬁ: fﬁgz:—f§4=—§, (2.2)

plus those with cyclic permutations of indices in (2.2). The
generators (2.1) of SU(3) can be chosen in the form

00 —1) [0 10
n=——loo o L=——-100
1 < = » 3 N~ ’

2 )
*/-3_10 0/ \/g\o 00

00 0 00 i
1—1(001\ 1—1/00(1)\
5_— s 2_— s

2 2
*/30—10/ ﬁ\ioo)
1(01'0 l/ooo\ (2.3)
L=—=io00] Ig=—=|00i|,
2 2
\/gooo \/5\01'0)
/00 0 /(20 0
4 l
L=——=|01 0| I5==[0-1 0|
2 6
\/500—1 00 —1

corresponding to the antifundamental representation.

The basis elements {I,, I;} of the Lie algebra su(3)
can be represented by left-invariant vector fields {E,, E;}
on the Lie group SU(3), and the dual basis {E%, E'} is a set
of left-invariant one-forms which obey the Maurer-Cartan
equations

dE* = —f9,E' NEP —1f4 E" NES, dE'=—3f} E" NE°,
(2.4)

where i, j = 7, 8 correspond to the Cartan subalgebra of
su(3).

Cosets SU(3)/U(1);;—Let us consider a U(1) sub-
group of SU(3) given by matrices of the form

exp(i(k+ 1)) 0 0
h= ( 0 exp(—ike) 0 ) (2.5)
0 0 exp(—ilp)

where k and [ are relatively prime integers and 0 = ¢ =27,
Consider the coset space
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X, = SUB)/U(1);, (2.6)

where U(1);; is represented by matrices (2.5). For rela-
tively prime integers k and [/ the coset spaces X, are
simply connected manifolds called Aloff-Wallach spaces
[18,19].

The space SU(3)/U(1) =: G/H consists of left cosets
gH, g € G, and the natural projection g+ gH is
denoted by

. SU(3) g Xk,l (27)

with fibers U(1); ;. Over a contractible open subset U of
X;.;» one can choose a map L: U— SU(3) such that
oL =1dy, i.e. L is a local section of the principal
bundle (2.7). The pull-backs of {E%, E'} by L from SU(3)
to X, are denoted by {e% e’} which satisfy the same
Maurer-Cartan equations

de®=—f4e NP —1fd P Ne¢,  del=—1fl P AeC

(2.8)

as {E%, E'}. Note that since all objects we consider will be
invariant under some action of SU(3), it will suffice to do
calculations just over the subset U.

If we denote by {e’}, a=1,...,7, an orthonormal
coframe on U C X, [basis for T*(X, ;) over U] then
e =e* fora=1,...,6,

.1 ) (2.9)

el = K(k + e’ — Xy(k —Ned

with {e?, e’} obeying the Maurer-Cartan equations (2.8)
and

=L (k=D + Sk + e (2.10)
2vA A

is a canonical connection one-form in the bundle (2.7).
Here

yi= 2—\15 A2 :=2(k* + ). 2.11)
Then as generators of SU(3) we have
=1, I,=A"Y(k+ DI — Bk — D),
1 (2.12)
Iy = A‘1<ﬁ(k —DI; + (k + 1)18),
so that
el, + e'l; = eI, + g, (2.13)

and I3 is the generator of the group U(1),,; given by (2.5).
Let us now rescale matrices (2.12) as

Li=y'si,, L=vy"'si,, L=vy""sL;
Ii=y7's3ly, Is=vy7's;Is, Ig=v"'s3ls,  (2.14)
L=(yu) 'L, Lk=(yp) 'L,
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such that

el, + e'l; = &I, + &8I, (2.15)

and therefore the rescaled coframe fields {¢%} and the
rescaled connection one-form &% have the form

1 —1,1

Z = ysylel, 52=)/§;162 é3=y€£1€3,
e =ysylet,  F=rysiled, E=rysileb,  (2.16)
& =ypel, & =yued

Here we introduced real parameters

S, Sp S3, M E R. (2.17)
As a metric on X, ; we take
d2 =8, ;8. (2.18)

One can show that for any given relatively prime integers &,
[ one can choose parameters s, and u (a = 1, 2, 3) such
that the metric (2.18) will be Einstein for a connection with
a torsion 3-form

1
=g Yasd A AE (2.19)

having the following nonvanishing components:

Ui3s = Waos = Va6 = U306 = V127 = 347 = U567 = 1.
(2.20)

Furthermore, this connection has the holonomy group G,
and the 3-form (2.19) defines a G, structure on X, [18,19].
For more details on the geometry of Aloff-Wallach spaces
see e.g. [18-21].

Complex basis on T*(X;;).—Note that X;; can be
fibered over the homogeneous manifold [F;=
SU(3)/U(1) X U(1) with fibers

U (1)t = exp(al;) (2.21)

parametrized by an angle 0 = @ = 27. So, for k =1 =1
we have a projection

X1 —Fs (2.22)

whose fibers U(1)L are orthogonal complements of
U(1) = U(1);; from (2.5), (2.6), and (2.7) in the torus
T? = U(1) X U(1) [the Cartan subgroup of SU(3)]. This
case is very special since X ; is an Einstein-Sasaki mani-
fold and therefore the cone C(X; ;) with the metric

dsé =dr* + rza'sg(L1 (2.23)

is a Calabi-Yau 4-conifold with the holonomy group1
SU(4) C spin(7). Furthermore, on X ; there exists a metric
such that X;; becomes a 3-Sasakian manifold with a
hyper-Kihler structure Sp(2) on the cone C(X ).

"Recall that the cone C(X;,) over the general Aloff-Wallach
space X;; has the holonomy group spin(7).
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Recall that F; is fibered over the projective plane
CP? = SU(3)/U(2), F; — CP?, and the same is true for
X, with any k and /. One can show that fibers of the
projection X, ; — CP?* are lens spaces S°/Z, with p =
|k + 1|. For clarity, let us combine all the above fibrations
into one diagram

SU(3) U(1)xU(1) F,
lU(l)k,z lcpl (2.24)
3
X 2 ocpe

where X, ; can also be fibered over 5 if k =/ = 1.

Note that §*/Z,, is an S'-fiber bundle over CP' and one
can consider complex forms which span CP? and CP' in
Xy.; as seen from (2.24). Namely, let us introduce complex
one-forms?

Ol:=¢'+i2, 0> =& +is*, O =-5+ie"
. - . (2.25)
Ol:=¢'—ie?, 0*:=-i", 0’'=-&-i,
plus real &7, &% and matrices
:%(il —liz), i;:%(i3_li4), 13 :%(_i5_1i6);
IN?—ZQ(’IN] +li2); j;:%(i3+ll~4), I+:%( I~5+li6),
—il,, —ily, (2.26)

which form a basis of the complex Lie algebra si(3, C) =
su(3) ® C. Their explicit form is

000\ /00 —1
IT=5|000]| If=s]00 0 |,
100) \0 0 0)
010\ /0 00
I,=5|000| IF=s|-100]
000/ \ 0 00)

000 (00 0 2.27)
I;=53{ 000 IF=s]00-1],
010) \0 0 0)

) I-k 00 k+1 0 0

—ilb=—_ 0 -10], —ily= 0 —k 0

“A o 0k EAEL U

Here, ®'2 span the CP? base in (2.24) and 03 spans the
CP' < $%/7,, and the choice of the sign in © is such that an
associated almost complex structure on a six-dimensional sub-
bundle of the tangent bundle, deﬁned by @, a = 1,2, 3, will be
integrable. For ®% = &5 + &% it will never be mtegrable For
k=1=1 our ch01ce corresponds to a Kihler structure on [F;
and ©° = &5 + &% corresponds to a nearly Kihler structure on
F5 [9,23].
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We have the commutation relations

[—il, I,1=CBT;,  [—il,I2]1=ChT;

jat g’

[, I51=Clpl,, 4 I;1=C) I, (2.28)

[T T3] = C (=il + C2 o0, + CLT5,
with

~1 S2S3 ~1 =2 _ S3S1 _ 3
Cu="735 =~ Gi=/ =Gy

1 S2

3 _S1S2_ =3 Al _ 2 _ A
Clz_g—%_ Gy G _M—A(Zk_ )=—Cy,
=2 l—k)=—C2, = (kt))=—C

72 MA 72’ 73 MA 73’

~ 2 o

1 _ _ I
CS] - _\/g—lm(k+2l)— _CST’

) (2.29)

~ __ /M
ng—m(2k+ l) - _CSQ’

- 2 s - Iu,gz

3 _ _ 3 7 1

2 2 2

1 MS) =7 _ _ MS3 =8 _\/51“91
Czi__Tl’ C33——T(k+l), Cii= A L,

~ Busy . \Bus

8 _ 2 8 _ 307
= A ko C5= A (I—k).
Note that standard undeformed structure constants
correspond to k=I1=1, pu=y1 g =g =y,

s3 = 7 and they are given by
1
V2

C?2=ﬁ7= C%Q’ C% = %2 =-C); = _C%: Vs

1 — — _ 1 2 — _(2
Cp= y="Cs CGi=5r=C

C=2y=—C, Cl= —>=Cyp (2.30)
1 ; 1
2 - — (2 T — 7. =7 = —
Ch=3="Co Ci=CL=Ch=—37.
1
8 —_ — _ (8
Ci=1="Cx

In the new basis the Maurer-Cartan equations (2.8)
become

dO* = —iCel NOF —1C% 0P AOY — C3,0° A O7,
%= —iChsin@P —102 @BAGY—C2_ QP AT

d® iC58/ ANOP —3C3 0P AOY — (3,07 A 07,
del =iCl, 0P A O, (2.31)

where we have used the structure constants from (2.29).

The metric on X ; in terms of O% and &7 is
5% = 8,;0°0° + (&), (2.32)

i.e. we have
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8ap = 30up g =1 (2.33)

Coset space X .—It is known (see e.g. [19]) that for
k =1 =1 the Aloff-Wallach space admits a metric such
that the cone C(X;;) over it admits metrics with the
holonomy group SU(4) C spin(7) (Calabi-Yau 4-fold)
and Sp(2) C SU(4) C spin(7) (hyper-Kihler 4-fold). This
means that in the Calabi-Yau case on C(X ) there exists a
closed (1,1)-form w"! (Kihler form) and in the hyper-
Kihler case on C(X ;) there exist three Kéhler forms:

L1 (2.34)

w3 = w"!, wy, and w,,

L1 we also have a closed

i.e. besides the closed form w
(2,0)-form w*? := w, + iw,.
For the general metric (2.23) on C(X;;), one can intro-

duce the (1,1)-form as

Wl = éﬂ(aaﬂé)“ A O+ O A G, (2.35)
where

04:= g -, 0= g +id. (2.36)
We obtain

—2ido"' =2 - ,u,g%)@li Ardr+(2— ,ugg%)(:)22 Ardr
+(1—- ,udgg)(":)33 A2rdr

$S3  $38; 199\, <103 A~13
+r2( 253 | S3S1_S1 2)(®123_®123),
S S2 S3

(2.37)

where @8 := @* A ©”, etc. From (2.37) it follows that
w"! is closed if
(2.38)

1
2 — 2 — 2 — 2 —
91—92—293—2a, ,U,—?

for any real number «.

SU(4)- and Sp(2)-holonomy on C(X;;).—Note that the
closure of the form w'"! means that the holonomy group
of the cone C(X; ;) reduces to the group U(4) (Kéahler
structure). For having on C(X;;) a Calabi-Yau structure
[SU(4) holonomy] one should impose an additional con-
dition of closure of the (4,0)-form

Q40 := 40" A O A O° A O~ (2.39)

By differentiating (2.39), from the condition dQ*° =0
one obtains

a=+1 or a=-—1 (2.40)

that fixes a Calabi-Yau metric on C(X, ;). Both a from
(2.40) correspond to the same metric on X ; and the choice
of different sign of « corresponds to the choice of different
orientation on X .

Now we want to check whether this metric allows fur-
ther reduction of the structure group SU(4) to the group
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Sp(2) C SU(4) C spin(7), i.e. allows an introduction of a
hyper-Kihler structure on C(X;;). On the Calabi-Yau
space C(X| 1), we consider the (2,0)-form

020 = 20! A O + 3@3 A 0%, (2.41)

where ( is a complex number. Then from the equation
dw>? = 0 we obtain

B=a=*l (2.42)

Therefore, the metric with &« = *1 from (2.40) allows a
hyper-Kihler structure® on the cone C(X 1) and a
3-Sasakian structure on X ;.

III. SPIN(7) INSTANTONS

G, instantons and gradient flows.—Consider the Chern-
Simons—type functional on X, |,

S__]
4 Xk

tr(FAF)A Y

= _%j tr(AAdA +§ﬂl/\ﬂ/\ﬂl)/\d¢/
Xy

_411 d(tr(A Ad A +§;4 AANAAY), G1)

Xk

where A is a connection on a rank-3 complex vector
bundle over X, [we will specialize to the gauge group
SU(3) in a moment] and F =dA + A A A is its cur-
vature. For the variation of (3.1) we have

68 1 1
(52) =57 @ APra= 3805 Fse G

5 A 2
where * is the Hodge operator and S is some coefficient
which can be calculated. Here, we used the fact that
diy ~*ifp = *diy ~ iy on X ;. Therefore, the equations
of motion are

dp ANF =0 §lF =0 ¢,5.F5: =0.

Note that (3.3) are exactly G,-instanton equations on
Xi.;. Now we can define the Chern-Simons gradient-flow
equations

(3.3)

Aa= b (30) =5 ¥asTse G

dA

whose stable points A := 5
.

=0 are G, instantons on Xy ;.

*Comparing with the standard expression for the symplectic
form in Darboux coordinates, the careful reader might notice an
unconventional relative sign appearing in (2.41) for the choice
a = —1. To arrive at the standard expression ©2? = ' A 62 +
®° A ©*, which is unique up to an_overall rescaling, one needs
to absorb the sign by replacing ®* with minus itself in the
definition (2.36). This has no further consequences except for an
irrelevant overall sign flip in (2.39) corresponding to the change
of orientation.
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Spin(7)-instanton equations on R X X; ;—On the one
hand, (3.4) is the flow equation. On the other hand, it is
exactly the spin(7)-instanton equation

Foa=3¥a5:Fpe

on the space R X X, ;, 7 € R, in the gauge A, = A, =0,
where 7 = x°, dr = &°.
So, let us consider A, F € su(3), and Eq. (3.5) on the

space R X X, ;. The SU(3)-equivariant Ansatz for A is

(3.5)

N|—

A = X;8 + [3e® = Y, 0% + Y,0% + X;&7 + I3,
ﬂo = O, (36)

with the following restrictions which guarantee the
SU(3) equivariance:

[—ils, Y 1=ChYp [—ilsYs1=ChYs [IsX;]=0.
3.7)

Here

Yy = 3(X) — iXy), Y, 1= 3(X3 — iXy), 38)

Y i=3(—Xs — iXe), Yo=Y}

are some 3 X 3 complex matrices depending on 7 € R, «,
B=123
For (3.6) and (3.7) we have

F=Y, "N+ YV, AO + X, NET +1([Y,, Yg]
= ClpY,)0AOP +([Y,, Y] - CY Y, = CT oY
+iC7 Xy +iC8 ST O A OF +1([v4 Y5]
—C7,Y5)0% A OF + (Y, X7 +iCE Y5) 0% A&
+ (Ve X71+iCE Y5O A, 3.9)

where Y, := dY,/dr, etc. We get

TUa:Ya’ foa:Yay .7:07:X7,

Fap=WaYel=CopY, Fap=[YaY5l—CL,Y;

Fop=[Y0 Yzl CZBY7 - 6351@ + iCZBX7 + iCiBig,

Foar=[Ya X1+iC8 Y  Far=[Ya X;1+iC5. Y.

(3.10)
Reduction to matrix equations.—Note that
1 aia
‘/’25 05:8°"¢
R | B
= 130"+ 912,00 58 AOW - (BD)

and therefore

105028-5
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_ i

>
(3.12)

_ _ 1 _
¢123_‘//123—_§» ¢711 V5= ‘f’73§—

Thus, from (3.5) we have
2F0a="20apyFrpt VapyFpy t2¢ap Fpr (3.13)

2.7:0&:2‘//a37.7:/37+ l/’aﬁyfﬁy+2¢&ﬁ7f37’ (3.14)

2F =335 F 0 = 20706 F aa (3.15)

Substituting (3.10), (3.11), and (3.12) into (3.13), (3.14),
and (3.15), we obtain the following matrix equations:

= (CL; + CLY; + [iXy, Y11 — [V, Y31 (3.16)
25 = (C2, + CX)Ys + [iX4, V5] — [Y5, ¥, ], (3.17)
275 = (C35 — C)Ys — [iX, Y51 — [Y1, V3] (3.18)
2X; = C8Ig + C"X; — i([Y), Y11 + [Y,, Y5] — [Y3, Y3)),
(3.19)
where
~ _ /8 ~8 ~8 ~T o 7T ~7 ~7
C¥:=C%+C5-C% C:=C; +C); — Cs

(3.20)

All structure constants in (3.16), (3.17), (3.18), (3.19), and
(3.20) can be taken from (2.29). The above matrix

equations can be written concisely by means of a “‘super-
potential” W via
A4 . ow
Ya=0as——, X7 =—. 3.21
@ ap aY,B 7 8X7 ( )
The explicit form of  the superpotential
W(er YZ) Y3) YI) YQ: Y?}) X7)3
= 1tr{(c1 + Cll)Yl Y; + (02 + C22)Y2Y2
+(C = CY3Y; — [V, Y3 1Y —[V5, Y, 1Y,
+i([X7, Yi]Yl +[X5, Yi]yz —-[X5, Y§JY3)
+C¥ L X, +1C7(X7)%, (3.22)

follows by inspection of (3.16), (3.17), (3.18), (3.19), and
(3.20). It can also be obtained directly by inserting the
Ansatz (3.6) into the Chern-Simons—type action (3.1).
Reduction to equations on scalar fields of T.—The SU
(3)-equivariance conditions (3.7) are solved by

=¢'I;, V,=¢L, Yi=¢L, Y, =¢'l,
Y,=¢0, Yi=¢L, X;=x"I,+ ),

where ¢% (o = 1, 2, 3) are complex scalar fields depend-
ing on 7, and y' (i = 7, 8) are real scalar fields of 7.

(3.23)
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Substituting (3.23) into (3.16), (3.17), (3.18), and (3.19),
we obtain

2¢1 (Cl + Cl _ X7é§i _ XSC;T)(ﬁI _ C;3$2¢3,
297 = (G}, + €3 — X'C3 — X*Ci) ¢ — O3, 617,
267 = (€ = oy + X' G+ x°Cp)¢? — 817,
2i" = )" = Clilo'lP = CLl°1 + CL14° P,
2 = C + ) = Cllo' P = G197 + Ci5l9°P,
(3.24)

where C7 and C? are given in (3.20). The superpotential W
becomes
2W = —}(Cly + CipI @' P = $3(C3, + C2)l 22

—93(c — NP +515283(d' $2 P + ¢ %)

+ (511! P+ $3C,1 9712 = 3C510°P)x
+(S3CL1' 17 + S35 |72 = S3C251 0 1)y
— C¥ Ky X' _%Cﬁ ijX X (3.25)

where K is the Killing metric K(I, J) = —tr(Z, J) for the
rescaled generators (2.27). The necessity to introduce K is
due to the fact that /; and I are not mutually orthogonal
for general values of k and /. The explicit form of K is
given by

K,p= —tr(7, Iﬁ) ) «p (nosumover ),

Ko7 =—tu(l;I;) = W,

PO =8("23;72"2jlz), (3.26)
K= —tr(l,13) = —4(16\/%32];; !

with all other components vanishing. We are now in a
position to express the first-order equations (3.24) in terms
of the superpotential W,

oW . oW

¢a: oz,B ' = —KY —.

3.27
0 X o (3:27)

The nonvanishing components of the inverse Killing metric
are given by

KaB — G;Z(SQB, K77 — _%KSS)
M4 4 (3.28)
K% = — TKW: K = TK78’

such that K*PK_ 5 = 62, K“FK =87, and KUK ;, = 5},

Equation (3.24) is a complicated set of coupled, non-
linear first-order ordinary differential equations and finding
the general solution is a formidable task. Instead, one may
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consider simplifications of these equations by setting some
of the fields to zero and hoping to find explicit solutions for
these special cases. Indeed, Eq. (3.24) admits a particularly
simple yet important special solution, namely,

ol =¢>=¢ =y =0,

—%-i—A'exp(%T), if C7 # 0,

%T—FB,

x5(1) = (3.29)

if 7 =0,

where A, B € R are constants of integration. For 7+ 0,
A = 0, this solution is stationary and corresponds to the
Abelian (rescaled, if C® # 0) canonical connection on a
line bundle over X ;. This is arguably the simplest example
for a G, instanton on Aloff-Wallach spaces. A similar
conclusion also holds for €7 = C® = 0 with the rescaled
canonical connection corresponding to the case B # 0.

Before specializing to k =/ =1, we briefly mention
that the second-order equations of motion and the potential
V for the scalar fields can be obtained straightforwardly
from the above first-order equations by simply applying
another time derivative to (3.27). The result can be
written as

o= gap 2V

vi—xi Y
agh’

- 3.30
o (330)
The potential V is determined by the usual formula in
terms of the superpotential

V = KW, W5 + KWW, (3.31)
where we introduced the shorthand notation W, =
aW/ap*,  Wz=0dW/dpP, and W,=oW/ax'.
Computing the gradient of V yields

Vo = KFY(W, g Wy + W, Wp) + KIW,, W,

_ pap " (3.32)
Vi = KP(W; W5 + W;zW,) + K/*W;;W,.
From this and (3.31) we can read off that critical points
of the superpotential are both zeros and critical points
of the potential. On the other hand, the critical points of
V fall into two categories: zero-energy ones (V = 0) and
positive-energy ones (V > 0). The former are precisely the
critical points of W, which will be studied further for the
special case k =1 =1 in the remainder of this section.
However, the positive-energy critical points of V do not
correspond to critical points of W. Instead, for them the
gradient of W is a “zero eigenvector” of the Hessian of W.
They will not play a role in our analysis.

Specialization to k = [ = 1.—For the special case of
Xy, with s, and u given in (2.38), from (3.24) we obtain
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29! = (@ =1+ x" = V3xM¢' — ad?¢’,

297 = (a = 1+ "+ V3)Ne? — ad' ¢,
¢ = (a+1-x)¢* — ad'¢?

267 ==X+ 1! + 177 — 147,

208 = —x* = V3Ig'IP + V3l42P,

(3.33)

with a = *1 for the 3-Sasakian structure on X; ;. The
Killing metric in this case becomes diagonal with nonzero
components

Kli = KZQ = 2K33 = K77 = Kgg = 2 (334)

The superpotential simplifies to
W=(1-a)¢'P+1¢71) — 1+ a)l¢’|?

U+ D) + (B! ¢2 B + $1 B2 ¢)

— (16! P +16212 = 1* )7 +3(18'12 — [4212)x"

(3.35)
and (3.33) may be written as
24" = —Wy, 297 =W 297 = —2W;,
2X7 = _W’], 2X8 = _Wg. (336)

The superpotential (3.35) is invariant under global U(1) X
U(1) transformations of the form

(P!, P2 d%) = (e19!, €222, €% p?)  with
61 +52_83:0m0d277

(3.37)

Note that the phases of the ¢ only enter in the cubic terms
(p'p2P> + p' P> P3) in the superpotential, which are thus
proportional to cos(argep! + argép? — arg¢?). The super-
potential is extremized when argp! + argp? — argep®> = 0
or 7 and, together with (3.37), this allows us to consider
purely real fields when searching for extrema of W. After
fixing ¢p* € R, there is a residual symmetry which acts by
flipping the sign of any two of the three complex functions
@“. Therefore, we can restrict ourselves not only to real
fields but also take, for example, ¢! and ¢ non-negative
when searching for extrema of W.

In addition, there is a Z, symmetry which acts by
interchanging ¢! and ¢? accompanied by a sign flip of y®

(1, d% x®) = (¢% !, —xP).

Explicit solutions for k = | = 1.—We begin by finding
the extrema of the superpotential (3.35). Making use of the
argument given at the end of the previous section, we take
all fields to be real and ¢!, ¢ non-negative. We then need
to solve the following equations in five real variables:

(3.38)
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(@ =1+ )" =3¢ = (£)ad’s® =0,
(a =1+ ) + 307 = (+)ag'e* =0,
(at1-xN¢* = (Had'¢> =0,
—X + (81 + (@) = (97 =0,
—x* = V36! + V3 =0

(3.39)

The sign ambiguity in the first three equations is a conse-
quence of cos(arg! + argp? — argp’) = =1 at the ex-
trema. The last two equations may be used to immediately
eliminate y’ and y® and one is then left with three cubic
equations for three unknowns,

(=1 +4(8'7 =22 — (¢P)g! — (£)ad?$* =0,
(a = 1 H4(¢22 2!V~ (PRI~ (a6 =0,
(a+1=($) = (672 + ($92)¢° — () $2 =0,
(3.40)
One obvious solution is ¢% = y' = 0. However, the full

analysis depends on the choice of @« = +1 or —1. The
results for « = +1 are summarized in the following table:

o' P PP @7  H®  Eigenvalues of Hessian w
o 0 0 0 0 (= +,+,0,0) 0
L1 0 (== ++ % -1/2

where the sign ambiguity in the ¢* column stems from the
fact that cos(argp! + argp? — argp’) = =1 at the ex-
trema [cf. Eq. (3.39)]. There is one saddle point and a
degenerate critical point at the origin. The appearance of
the degenerate critical point can be understood from a
physics perspective by noticing that ¢! and ¢? are mass-
less and therefore correspond to flat directions in the space
of solutions.

The results for « = —1 are summarized in the following
table:

Eigenvalues
o' P? @7 oA of Hessian w
0 0 0 0 0 (+, +, +,+,0) 0
/52 0 0 1/2 —3/2 (- ++++) 1/2

c. c.  *2/3 1/6 —35/6 (— — + +, +) 31/54
232/3 242/3 *2/3 4/3 0 (=, — +, + +) 40/27
1 1 1 1 0 (= —-—-++ 32
where c. = % 11 £ /105, and again the sign ambiguity

in the ¢> column is due to the fact that cos(arge' +
argp? — arg®) = =1 at the extrema. The origin is a
degenerate critical point. The field ¢> is massless and
hence corresponds to a flat direction in the space of solu-
tions, which explains why the critical point at the origin is
degenerate. In addition, there are four isolated saddle
points.

A few remarks are in order concerning the critical points
found above. First of all, we note that the critical point at
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the origin (i.e. where all scalar fields vanish) corresponds
to the Abelian canonical connection on a rank-3 complex
vector bundle over X ; and is thus arguably the simplest
explicit example of a G, instanton on an Aloff-Wallach
space. Also, the point where y® = 0 and all other scalar
fields are equal to unity corresponds to a flat connection
F = 0. These observations are valid for both choices of
a=+1lor—1.

Now that we have found the critical points of the super-
potential, we consider the gradient flow connecting suit-
able pairs of them. In other words, we look for solutions of
(3.33), which start at 7 = —oo from a critical point with a
larger value of W and flow as 7 — oo toward a critical point
with a smaller value of W. These kink configurations are
finite-action solutions of (3.5) and thus allow a physical
interpretation as spin(7) instantons on R X X ;.

In the search for instanton solutions, one is immediately
faced with two technical difficulties. First, the structure of
the equations which needs to be solved is such that con-
ventional analytic methods (and known exact solution
Ansdtze) are not applicable. For example, the well-known
hyperbolic tangent-type kink solutions, which inter alia
work in one dimension lower [13], do not respect the
structure of (3.33). This means we need to resort to nu-
merical methods.

Second, with the exception of the degenerate critical
point at the origin, all other critical points are isolated
saddle points. Solutions flowing toward these points are
unstable. For a given starting point, there is exactly one
trajectory whose end point is an isolated saddle point and it
is crucial to pick the initial direction to be exactly along
this unique trajectory. Combined with the first point, this
presents us with a numerical ‘““fine-tuning problem” when
it comes to choosing the correct initial conditions for the
desired flow. One would somehow need to know the tra-
jectory’s direction at the starting point before even attempt-
ing to (numerically) solve the equations, leaving oneself
with a “fishing in the dark™ situation. Moreover, even the
smallest deviation from the correct direction will lead to
solutions which, instead of approaching the saddle point,
will roll off to oo swiftly.

L e N,

-0.5

FIG. 1 (color online). Kink solution for « = —1 flowing from
W=1/2at7=—ocotoW=0as7— . ¢> and ¢> are zero
everywhere and thus their plot coincides with the 7 axis.
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There is only one case where this fine-tuning problem
does not occur and where we have been able to find an
explicit (numerical) solution. It is the kink solution for & =
—1 flowing from W = 1/2at 7= —o0o to W = 0 as 7— o,
The numerical solution for this case is shown in Fig. 1. It
should be noted that the shape of these curves resembles
that of a hyperbolic tangent-type kink. Indeed, although a
hyperbolic tangent Ansatz does not solve Egs. (3.33), it does
provide a good approximation. The maximal deviation
from the actual numerical solution is of the order of 1%.
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