1,398 research outputs found

    Global Glacier Mass Loss During the GRACE Satellite Mission (2002-2016)

    Get PDF
    Glaciers outside of the ice sheets are known to be important contributors to sea level rise. In this work, we provide an overview of changes in the mass of the world's glaciers, excluding those in Greenland and Antarctica, between 2002 and 2016, based on satellite gravimetry observations of the Gravity Recovery and Climate Experiment (GRACE). Glaciers lost mass at a rate of 199 ± 32 Gt yr−1 during this 14-yr period, equivalent to a cumulative sea level contribution of 8 mm. We present annual mass balances for 17 glacier regions, that show a qualitatively good agreement with published estimates from in situ observations. We find that annual mass balance varies considerably from year to year, which can in part be attributed to changes in the large-scale circulation of the atmosphere. These variations, combined with the relatively short observational record, hamper the detection of acceleration of glacier mass loss. Our study highlights the need for continued observations of the Earth's glacierized regions

    Modeling the dynamic response of outlet glaciers to observed ice-shelf thinning in the Bellingshausen Sea Sector, West Antarctica

    Get PDF
    Satellite observations of gravity anomalies, ice-surface elevation and glacier velocity show significant increases in net grounded-ice-mass loss over the past decade along the Bellingshausen Sea sector (BSS), West Antarctica, in areas where warm (>1°C) sea water floods the continental shelf. These observations provide compelling but indirect evidence that mass losses are driven primarily by reduced buttressing from the floating ice shelves caused by ocean-driven ice-shelf thinning. Here, we combine recent observations of ice velocity, thickness and thickness changes with an ice flow model to study the instantaneous dynamic response of BSS outlet glaciers to observed ice-shelf thinning, alone. Our model results show that multiple BSS outlet glaciers respond instantaneously to observed ice-shelf thinning, particularly in areas where ice shelves ground at discrete points. Increases in modeled and observed dynamic mass losses, however, account for ~5% of the mass loss rates estimated from gravity anomalies and changes in ice-surface elevation, suggesting that variations in surface mass balance may be key to understanding recent BSS mass loss. Our approach isolates the impact of ice-shelf thinning on glacier flow and shows that if ice-shelf thinning continues at or above current rates, total BSS mass loss will increase in the next decade

    Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites

    Get PDF
    Between 2003-2016, the Greenland ice sheet (GrIS) was one of the largest contributors to sea level rise, as it lost about 255 Gt of ice per year. This mass loss slowed in 2017 and 2018 to about 100 Gt yr−1. Here we examine further changes in rate of GrIS mass loss, by analyzing data from the GRACE-FO (Gravity Recovery and Climate Experiment – Follow On) satellite mission, launched in May 2018. Using simulations with regional climate models we show that the mass losses observed in 2017 and 2018 by the GRACE and GRACE-FO missions are lower than in any other two year period between 2003 and 2019, the combined period of the two missions. We find that this reduced ice loss results from two anomalous cold summers in western Greenland, compounded by snow-rich autumn and winter conditions in the east. For 2019, GRACE-FO reveals a return to high melt rates leading to a mass loss of 223 ± 12 Gt month−1 during the month of July alone, and a record annual mass loss of 532 ± 58 Gt yr−1

    Accelerating Innovation in the Creation of Biovalue : The Cell and Gene Therapy Catapult

    Get PDF
    The field of regenerative medicine (RM) has considerable therapeutic promise that is proving difficult to realize. As a result, governments have supported the establishment of intermediary agencies to “accelerate” innovation. This paper examines in detail one such agency, the UK's Cell and Gene Therapy Catapult (CGTC). We describe CGTC’s role as an accelerator agency and its value-narrative, which combines both “health and wealth.” Drawing on the notion of socio-technical imaginaries, we unpack the tensions within this narrative and its instantiation as the CGTC cell therapy infrastructure is built and engages with other agencies, some of which have different priorities and roles to play within the RM field

    A High-Yield Synthesis of Chalcopyrite CuIn S

    Get PDF
    We report high-yield and efficient size-controlled syntheses of Chalcopyrite CuInS2 nanoparticles by decomposing molecular single source precursors (SSPs) via microwave irradiation in the presence of 1,2-ethanedithiol at reaction temperatures as low as 100°C and times as short as 30 minutes. The nanoparticles sizes were 1.8 nm to 10.8 nm as reaction temperatures were varied from 100°C to 200°C with the bandgaps from 2.71 eV to 1.28 eV with good size control and high yields (64%–95%). The resulting nanoparticles were analyzed by XRD, UV-Vis, ICP-OES, XPS, SEM, EDS, and HRTEM. Titration studies by 1H NMR using SSP 1 with 1,2-ethanedithiol and benzyl mercaptan were conducted to elucidate the formation of Chalcopyrite CuInS2 nanoparticles
    • 

    corecore