59 research outputs found
Correlation functions of three heavy operators - the AdS contribution
We consider operators in N=4 SYM theory which are dual, at strong coupling,
to classical strings rotating in S^5. Three point correlation functions of such
operators factorize into a universal contribution coming from the AdS part of
the string sigma model and a state-dependent S^5 contribution. Consequently a
similar factorization arises for the OPE coefficients. In this paper we
evaluate the AdS universal factor of the OPE coefficients which is explicitly
expressed just in terms of the anomalous dimensions of the three operators.Comment: 49 pages, 3 figures; v.2 references corrected; v3: corrected
discussion in section 5, results unchange
Gravity duals of supersymmetric gauge theories on three-manifolds
We study gravity duals to a broad class of N=2 supersymmetric gauge theories
defined on a general class of three-manifold geometries. The gravity
backgrounds are based on Euclidean self-dual solutions to four-dimensional
gauged supergravity. As well as constructing new examples, we prove in general
that for solutions defined on the four-ball the gravitational free energy
depends only on the supersymmetric Killing vector, finding a simple closed
formula when the solution has U(1) x U(1) symmetry. Our result agrees with the
large N limit of the free energy of the dual gauge theory, computed using
localization. This constitutes an exact check of the gauge/gravity
correspondence for a very broad class of gauge theories with a large N limit,
defined on a general class of background three-manifold geometries.Comment: 74 pages, 2 figures; v2: minor change
More three-point correlators of giant magnons with finite size
In the framework of the semiclassical approach, we compute the normalized
structure constants in three-point correlation functions, when two of the
vertex operators correspond to heavy string states, while the third vertex
corresponds to a light state. This is done for the case when the heavy string
states are finite-size giant magnons with one or two angular momenta, and for
two different choices of the light state, corresponding to dilaton operator and
primary scalar operator. The relevant operators in the dual gauge theory are
Tr(F_{\mu\nu}^2 Z^j+...) and Tr(Z^j). We first consider the case of AdS_5 x S^5
and N = 4 super Yang-Mills. Then we extend the obtained results to the
gamma-deformed AdS_5 x S^5_\gamma, dual to N = 1 super Yang-Mills theory,
arising as an exactly marginal deformation of N = 4 super Yang-Mills.Comment: 14 pages, no figure
Holographic three-point functions of giant gravitons
Working within the AdS/CFT correspondence we calculate the three-point
function of two giant gravitons and one pointlike graviton using methods of
semiclassical string theory and considering both the case where the giant
gravitons wrap an S^3 in S^5 and the case where the giant gravitons wrap an S^3
in AdS_5. We likewise calculate the correlation function in N=4 SYM using two
Schur polynomials and a single trace chiral primary. We find that the gauge and
string theory results have structural similarities but do not match perfectly,
and interpret this in terms of the Schur polynomials' inability to interpolate
between dual giant and pointlike gravitons.Comment: 21 page
Gluon Scattering Amplitudes in Finite Temperature Gauge/Gravity Dualities
We examine the gluon scattering amplitude in N=4 super Yang-Mills at finite
temperature with nonzero R-charge densities, and in Non-Commutative gauge
theory at finite temperature. The gluon scattering amplitude is defined as a
light-like Wilson loop which lives at the horizon of the T-dual black holes of
the backgrounds we consider. We study in detail a special amplitude, which
corresponds to forward scattering of a low energy gluon off a high energy one.
For this kinematic configuration in the considered backgrounds, we find the
corresponding minimal surface which is directly related to the gluon scattering
amplitude. We find that for increasing the chemical potential or the
non-commutative parameter, the on-shell action corresponding to our Wilson loop
in the T-dual space decreases. For all of our solutions the length of the short
side of the Wilson loop is constrained by an upper bound which depends on the
temperature, the R-charge density and the non-commutative parameter. Due to
this constraint, in the limit of zeroth temperature our approach breaks down
since the upper bound goes to zero, while by keeping the temperature finite and
letting the chemical potential or the non-commutative parameter to approach to
zero the limit is smooth.Comment: 30 pages, 16 figures, minor corrections (plus improved numerical
computation for the non-commutative case
Three-point correlators for giant magnons
Three-point correlation functions in the strong-coupling regime of the
AdS/CFT correspondence can be analyzed within a semiclassical approximation
when two of the vertex operators correspond to heavy string states having large
quantum numbers while the third vertex corresponds to a light state with fixed
charges. We consider the case where the heavy string states are chosen to be
giant magnon solitons with either a single or two different angular momenta,
for various different choices of light string states.Comment: 15 pages. Latex. v2: Misprints corrected. Published versio
Tailoring Three-Point Functions and Integrability II. Weak/strong coupling match
We compute three-point functions of single trace operators in planar N=4 SYM.
We consider the limit where one of the operators is much smaller than the other
two. We find a precise match between weak and strong coupling in the
Frolov-Tseytlin classical limit for a very general class of classical
solutions. To achieve this match we clarify the issue of back-reaction and
identify precisely which three-point functions are captured by a classical
computation.Comment: 36 pages. v2: figure added, references adde
Spinning strings and integrable spin chains in the AdS/CFT correspondence
In this introductory review we discuss dynamical tests of the AdS_5 x S^5
string/N=4 super Yang-Mills duality. After a brief introduction to AdS/CFT we
argue that semiclassical string energies yield information on the quantum
spectrum of the string in the limit of large angular momenta on the S^5. The
energies of the folded and circular spinning string solutions rotating on a S^3
within the S^5 are derived, which yield all loop predictions for the dual gauge
theory scaling dimensions. These follow from the eigenvalues of the dilatation
operator of N=4 super Yang-Mills in a minimal SU(2) subsector and we display
its reformulation in terms of a Heisenberg s=1/2 spin chain along with the
coordinate Bethe ansatz for its explicit diagonalization. In order to make
contact to the spinning string energies we then study the thermodynamic limit
of the one-loop gauge theory Bethe equations and demonstrate the matching with
the folded and closed string result at this loop order. Finally the known gauge
theory results at higher-loop orders are reviewed and the associated long-range
spin chain Bethe ansatz is introduced, leading to an asymptotic all-loop
conjecture for the gauge theory Bethe equations. This uncovers discrepancies at
the three-loop order between gauge theory scaling dimensions and string theory
energies and the implications of this are discussed. Along the way we comment
on further developments and generalizations of the subject and point to the
relevant literature.Comment: 40 pages, invited contribution to Living Reviews in Relativity. v2:
improvements in the text and references adde
Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions
Background Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ∼24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO2 and H2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (no variation in temperature, radiation, or other environmental cues). Results We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20–79 % of the daily variation range in CO2 and H2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8–17 % in commonly used stomatal conductance models. Conclusions Our results show that circadian controls affect diurnal CO2 and H2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Circadian controls act as a ‘memory’ of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies
Experimental evidence for sustained carbon sequestration in fire-managed, peat moorlands.
Peat moorlands are important habitats in the boreal region, where they store approximately 30% of the global soil carbon (C). Prescribed burning on peat is a very contentious management strategy, widely linked with loss of carbon. Here, we quantify the effects of prescribed burning for lightly managed boreal moorlands and show that the impacts on peat and C accumulation rates are not as bad as is widely thought. We used stratigraphical techniques within a unique replicated ecological experiment with known burn frequencies to quantify peat and C accumulation rates (0, 1, 3 and 6 managed burns since around 1923). Accumulation rates were typical of moorlands elsewhere, and were reduced significantly only in the 6-burn treatment. However, impacts intensified gradually with burn frequency; each additional burn reduced the accumulation rates by 4.9 g m−2 yr−1 (peat) and 1.9 g C cm−2 yr−1, but did not prevent accumulation. Species diversity and the abundance of peat-forming species also increased with burn frequency. Our data challenge widely held perceptions that a move to 0 burning is essential for peat growth, and show that appropriate prescribed burning can both mitigate wildfire risk in a warmer world and produce relatively fast peat growth and sustained C sequestration
- …