13 research outputs found

    Widening of the genetic and clinical spectrum of Lamb-Shaffer syndrome, a neurodevelopmental disorder due to SOX5 haploinsufficiency

    Get PDF
    Purpose Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved. Methods Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various types ofSOX5 alterations. Functional consequences of selected substitutions were investigated. Results Microdeletions and truncating variants occurred throughout SOX5. In contrast, most missense variants clustered in the pivotal SOX-specific high-mobility-group domain. The latter variants prevented SOX5 from binding DNA and promoting transactivation in vitro, whereas missense variants located outside the high-mobility-group domain did not. Clinical manifestations and severity varied among patients. No clear genotype-phenotype correlations were found, except that missense variants outside the high-mobility-group domain were generally better tolerated. Conclusions This study extends the clinical and genetic spectrum associated with LAMSHF and consolidates evidence that SOX5 haploinsufficiency leads to variable degrees of intellectual disability, language delay, and other clinical features

    Clinical delineation, sex differences, and genotype-phenotype correlation in pathogenic KDM6A variants causing X-linked Kabuki syndrome type 2.

    Get PDF
    PURPOSE: The variant spectrum and the phenotype of X-linked Kabuki syndrome type 2 (KS2) are poorly understood. METHODS: Genetic and clinical details of new and published individuals with pathogenic KDM6A variants were compiled and analyzed. RESULTS: Sixty-one distinct pathogenic KDM6A variants (50 truncating, 11 missense) from 80 patients (34 males, 46 females) were identified. Missense variants clustered in the TRP 2, 3, 7 and Jmj-C domains. Truncating variants were significantly more likely to be de novo. Thirteen individuals had maternally inherited variants and one had a paternally inherited variant. Neonatal feeding difficulties, hypoglycemia, postnatal growth retardation, poor weight gain, motor delay, intellectual disability (ID), microcephaly, congenital heart anomalies, palate defects, renal malformations, strabismus, hearing loss, recurrent infections, hyperinsulinism, seizures, joint hypermobility, and gastroesophageal reflux were frequent clinical findings. Facial features of over a third of patients were not typical for KS. Males were significantly more likely to be born prematurely, have shorter stature, and severe developmental delay/ID. CONCLUSION: We expand the KDM6A variant spectrum and delineate the KS2 phenotype. We demonstrate that the variability of the KS2 phenotypic depends on sex and the variant type. We also highlight the overlaps and differences between the phenotypes of KS2 and KS1

    The Phenotypic Continuum of ATP1A3-Related Disorders

    No full text
    Background and Objectives ATP1A3 is associated with a broad spectrum of predominantly neurologic disorders, which continues to expand beyond the initially defined phenotypes of alternating hemiplegia of childhood, rapid-onset dystonia parkinsonism, and cerebellar ataxia, areflexia, pes cavus, optic atrophy, sensorineural hearing loss syndrome. This phenotypic variability makes it challenging to assess the pathogenicity of an ATP1A3 variant found in an undiagnosed patient. We describe the phenotypic features of individuals carrying a pathogenic/likely pathogenic ATP1A3 variant and perform a literature review of all ATP1A3 variants published thus far in association with human neurologic disease. Our aim is to demonstrate the heterogeneous clinical spectrum of the gene and look for phenotypic overlap between patients that will streamline the diagnostic process. Methods Undiagnosed individuals with ATP1A3 variants were identified within the cohort of the Deciphering Developmental Disorders study with additional cases contributed by collaborators internationally. Detailed clinical data were collected with consent through a questionnaire completed by the referring clinicians. PubMed was searched for publications containing the term "ATP1A3" from 2004 to 2021. Results Twenty-four individuals with a previously undiagnosed neurologic phenotype were found to carry 21 ATP1A3 variants. Eight variants have been previously published. Patients experienced on average 2-3 different types of paroxysmal events. Permanent neurologic features were common including microcephaly (7; 29%), ataxia (13; 54%), dystonia (10; 42%), and hypotonia (7; 29%). All patients had cognitive impairment. Neuropsychiatric diagnoses were reported in 16 (66.6%) individuals. Phenotypes were extremely varied, and most individuals did not fit clinical criteria for previously published phenotypes. On review of the literature, 1,108 individuals have been reported carrying 168 different ATP1A3 variants. The most common variants are associated with well-defined phenotypes, while more rare variants often result in very rare symptom correlations, such as are seen in our study. Combined Annotation-Dependent Depletion (CADD) scores of pathogenic and likely pathogenic variants were significantly higher and variants clustered within 6 regions of constraint. Discussion Our study shows that looking for a combination of paroxysmal events, hyperkinesia, neuropsychiatric symptoms, and cognitive impairment and evaluating the CADD score and variant location can help identify an ATP1A3-related condition, rather than applying diagnostic criteria alone

    The phenotypic continuum of ATPLA3-related disorders

    No full text
    Background and objectives: ATP1A3 is associated with a broad spectrum of predominantly neurological disorders, that continues to expand beyond the initially defined phenotypes of Alternating Hemiplegia of Childhood (AHC), Rapid-onset Dystonia Parkinsonism (RDP) and Cerebellar ataxia, Areflexia, Pes cavus, Optic atrophy, Sensorineural hearing loss syndrome (CAPOS). This phenotypic variability makes it challenging to assess pathogenicity of an ATP1A3 variant found in an undiagnosed patient. We describe the phenotypic features of individuals carrying a pathogenic/likely pathogenic ATP1A3 variant and perform a literature review of all ATP1A3 variants published thus far in association with human neurological disease. Our aim is to demonstrate the heterogeneous clinical spectrum of the gene and look for phenotypic overlap between patients that will streamline the diagnostic process. Methods: Undiagnosed individuals with ATP1A3 variants were identified within the cohort of the Deciphering Developmental Disorders (DDD) study with additional cases contributed by collaborators internationally. Detailed clinical data was collected with consent through a questionnaire completed by the referring clinicians. PubMed was searched for publications containing the term “ATP1A3” from 2004 to 2021. Results: Twenty-four individuals with a previously undiagnosed neurological phenotype were found to carry 21 ATP1A3 variants. Eight variants have been previously published. Patients experienced on average 2-3 different types of paroxysmal events. Permanent neurological features were common including microcephaly (7;29%), ataxia (13;54%), dystonia (10;42%) and hypotonia (7;29%). All patients had cognitive impairment. Neuropsychiatric diagnoses were reported in 16 (66.6%) individuals. Phenotypes were extremely varied and most individuals did not fit clinical criteria for previously published phenotypes. On review of the literature, 1108 individuals have been reported carrying 168 different ATP1A3 variants. The most common variants are associated with well-defined phenotypes, while more rare variants often result in very rare symptom correlations, such as are seen in our study. CADD scores of pathogenic and likely pathogenic variants were significantly higher and variants clustered within six regions of constraint. Conclusion: Our study shows that looking for a combination of paroxysmal events, hyperkinesia, neuropsychiatric symptoms, and cognitive impairment, as well as evaluating CADD score and variant location can help identify an ATP1A3-related condition, rather than applying diagnostic criteria alone

    The Phenotypic Continuum of ATP1A3-Related Disorders

    No full text
    Background and Objectives ATP1A3 is associated with a broad spectrum of predominantly neurologic disorders, which continues to expand beyond the initially defined phenotypes of alternating hemiplegia of childhood, rapid-onset dystonia parkinsonism, and cerebellar ataxia, areflexia, pes cavus, optic atrophy, sensorineural hearing loss syndrome. This phenotypic variability makes it challenging to assess the pathogenicity of an ATP1A3 variant found in an undiagnosed patient. We describe the phenotypic features of individuals carrying a pathogenic/likely pathogenic ATP1A3 variant and perform a literature review of all ATP1A3 variants published thus far in association with human neurologic disease. Our aim is to demonstrate the heterogeneous clinical spectrum of the gene and look for phenotypic overlap between patients that will streamline the diagnostic process. Methods Undiagnosed individuals with ATP1A3 variants were identified within the cohort of the Deciphering Developmental Disorders study with additional cases contributed by collaborators internationally. Detailed clinical data were collected with consent through a questionnaire completed by the referring clinicians. PubMed was searched for publications containing the term "ATP1A3" from 2004 to 2021. Results Twenty-four individuals with a previously undiagnosed neurologic phenotype were found to carry 21 ATP1A3 variants. Eight variants have been previously published. Patients experienced on average 2-3 different types of paroxysmal events. Permanent neurologic features were common including microcephaly (7; 29%), ataxia (13; 54%), dystonia (10; 42%), and hypotonia (7; 29%). All patients had cognitive impairment. Neuropsychiatric diagnoses were reported in 16 (66.6%) individuals. Phenotypes were extremely varied, and most individuals did not fit clinical criteria for previously published phenotypes. On review of the literature, 1,108 individuals have been reported carrying 168 different ATP1A3 variants. The most common variants are associated with well-defined phenotypes, while more rare variants often result in very rare symptom correlations, such as are seen in our study. Combined Annotation-Dependent Depletion (CADD) scores of pathogenic and likely pathogenic variants were significantly higher and variants clustered within 6 regions of constraint. Discussion Our study shows that looking for a combination of paroxysmal events, hyperkinesia, neuropsychiatric symptoms, and cognitive impairment and evaluating the CADD score and variant location can help identify an ATP1A3-related condition, rather than applying diagnostic criteria alone.Genetics of disease, diagnosis and treatmen

    The phenotypic continuum of ATPLA3-related disorders

    Get PDF
    Background and objectives: ATP1A3 is associated with a broad spectrum of predominantly neurological disorders, that continues to expand beyond the initially defined phenotypes of Alternating Hemiplegia of Childhood (AHC), Rapid-onset Dystonia Parkinsonism (RDP) and Cerebellar ataxia, Areflexia, Pes cavus, Optic atrophy, Sensorineural hearing loss syndrome (CAPOS). This phenotypic variability makes it challenging to assess pathogenicity of an ATP1A3 variant found in an undiagnosed patient. We describe the phenotypic features of individuals carrying a pathogenic/likely pathogenic ATP1A3 variant and perform a literature review of all ATP1A3 variants published thus far in association with human neurological disease. Our aim is to demonstrate the heterogeneous clinical spectrum of the gene and look for phenotypic overlap between patients that will streamline the diagnostic process. Methods: Undiagnosed individuals with ATP1A3 variants were identified within the cohort of the Deciphering Developmental Disorders (DDD) study with additional cases contributed by collaborators internationally. Detailed clinical data was collected with consent through a questionnaire completed by the referring clinicians. PubMed was searched for publications containing the term “ATP1A3” from 2004 to 2021. Results: Twenty-four individuals with a previously undiagnosed neurological phenotype were found to carry 21 ATP1A3 variants. Eight variants have been previously published. Patients experienced on average 2-3 different types of paroxysmal events. Permanent neurological features were common including microcephaly (7;29%), ataxia (13;54%), dystonia (10;42%) and hypotonia (7;29%). All patients had cognitive impairment. Neuropsychiatric diagnoses were reported in 16 (66.6%) individuals. Phenotypes were extremely varied and most individuals did not fit clinical criteria for previously published phenotypes. On review of the literature, 1108 individuals have been reported carrying 168 different ATP1A3 variants. The most common variants are associated with well-defined phenotypes, while more rare variants often result in very rare symptom correlations, such as are seen in our study. CADD scores of pathogenic and likely pathogenic variants were significantly higher and variants clustered within six regions of constraint. Conclusion: Our study shows that looking for a combination of paroxysmal events, hyperkinesia, neuropsychiatric symptoms, and cognitive impairment, as well as evaluating CADD score and variant location can help identify an ATP1A3-related condition, rather than applying diagnostic criteria alone
    corecore