121 research outputs found

    Multiple hepatic sclerosing hemangioma mimicking metastatic liver tumor successfully treated by laparoscopic surgery: Report of a case

    Get PDF
    AbstractIntroductionHepatic sclerosing hemangioma is a very rare benign tumor, characterized by fibrosis and hyalinization occurring in association with degeneration of a hepatic cavernous hemangioma. We report here a rare case of multiple hepatic sclerosing hemangioma mimicking metastatic liver tumor that was successfully treated using laparoscopic surgery.Presentation of caseA 67-year-old woman with multiple liver tumors underwent single-incision laparoscopic sigmoidectomy under a diagnosis of advanced sigmoid cancer with multiple liver metastases. Examination of surgical specimens of sigmoid colon revealed moderately differentiated adenocarcinoma invading the serosa, and no lymph node metastases. Serum levels of carcinoembryonic antigen and carbohydrate antigen 19-9 remained within normal limits throughout the course. Two months after sigmoidectomy, the patient underwent laparoscopic partial hepatectomy of S1 and S6 of the liver and cholecystectomy. Histopathological examination showed that the tumors mainly comprised hyalinized tissue and collagen fibers with sporadic vascular spaces on hematoxylin and eosin-stained sections, yielding a diagnosis of multiple hepatic sclerosing hemangioma. No evidence of recurrence has been seen as of 21 months postoperatively.DiscussionDifferentiating multiple sclerosing hemangiomas from metastatic liver tumors was quite difficult because the radiological findings were closely compatible with liver metastases. Laroscopic hepatectomy provided less blood loss, a shorter duration of hospitalization, and good cosmetic results.ConclusionSclerosing hemangioma should be included among the differential diagnoses of multiple liver tumors in patients with colorectal cancer. Laparoscopic hepatectomy is useful for diagnostic therapy for undiagnosed multiple liver tumors

    A mid term comparison of open wedge high tibial osteotomy vs unicompartmental knee arthroplasty for medial compartment osteoarthritis of the knee

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The choice of surgical treatments for unicompartmental osteoarthritis (OA) of the knee is still somewhat controversial. Midterm results from cases treated using unicompartmental knee arthroplasty (UKA) or open wedge high tibial osteotomy (OWHTO) were evaluated retrospectively.</p> <p>Methods</p> <p>Twenty-seven knees of 24 patients with varus deformities underwent OWHTO and 30 knees of 18 patients underwent UKA surgeries for the treatment of medial compartmental osteoarthritis (OA). The KSS score, FTA, range of motion and complications were evaluated before and after surgery.</p> <p>Results</p> <p>The preoperative mean KSS scores were 49 points in the OWHTO group and 62 in the UKA group which improved postoperatively to 89 (excellent; 19 knees, good; 8 knees), and 88 (excellent; 25, good; 4, fair; 1), respectively. There was no significant difference between the OWHTO and UKA scores. Seventeen patients in the OWHTO group could sit comfortably in the formal Japanese style after surgery. The preoperative mean FTA values for the OWHTO and UKA groups were 182 degrees and 184, and at follow-up measured 169 and 170, respectively. In the UKA group, the femoral component and the polyethylene insertion in one patient was exchanged at 5 years post-surgery and revision TKAs were performed in 2 cases. In the OWHTO group, one tibial plateau fracture and one subcutaneous tissue infection were noted.</p> <p>Conclusions</p> <p>Treatment options should be carefully considered for each OA patient in accordance with their activity levels, grade of advanced OA, age, and range of motion of the knee. OWHTO shows an improved indication for active patients with a good range of motion of the knee.</p

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    The Quiescent Intracluster Medium in the Core of the Perseus Cluster

    Get PDF
    Clusters of galaxies are the most massive gravitationally-bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and a host of astrophysical processes. Knowledge of the dynamics of the pervasive hot gas, which dominates in mass over stars in a cluster, is a crucial missing ingredient. It can enable new insights into mechanical energy injection by the central supermassive black hole and the use of hydrostatic equilibrium for the determination of cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50 million K diffuse hot plasma filling its gravitational potential well. The Active Galactic Nucleus of the central galaxy NGC1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These likely induce motions in the intracluster medium and heat the inner gas preventing runaway radiative cooling; a process known as Active Galactic Nucleus Feedback. Here we report on Hitomi X-ray observations of the Perseus cluster core, which reveal a remarkably quiescent atmosphere where the gas has a line-of-sight velocity dispersion of 164+/-10 km/s in a region 30-60 kpc from the central nucleus. A gradient in the line-of-sight velocity of 150+/-70 km/s is found across the 60 kpc image of the cluster core. Turbulent pressure support in the gas is 4% or less of the thermodynamic pressure, with large scale shear at most doubling that estimate. We infer that total cluster masses determined from hydrostatic equilibrium in the central regions need little correction for turbulent pressure.Comment: 31 pages, 11 Figs, published in Nature July

    Hitomi (ASTRO-H) X-ray Astronomy Satellite

    Get PDF
    The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E  >  2  keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month
    corecore