6,347 research outputs found
A comparison of methods for DPLL loop filter design
Four design methodologies for loop filters for a class of digital phase-locked loops (DPLLs) are presented. The first design maps an optimum analog filter into the digital domain; the second approach designs a filter that minimizes in discrete time weighted combination of the variance of the phase error due to noise and the sum square of the deterministic phase error component; the third method uses Kalman filter estimation theory to design a filter composed of a least squares fading memory estimator and a predictor. The last design relies on classical theory, including rules for the design of compensators. Linear analysis is used throughout the article to compare different designs, and includes stability, steady state performance and transient behavior of the loops. Design methodology is not critical when the loop update rate can be made high relative to loop bandwidth, as the performance approaches that of continuous time. For low update rates, however, the miminization method is significantly superior to the other methods
On the asymptotic acoustic-mode phase in red-giant stars and its dependence on evolutionary state
Asteroseismic investigations based on the wealth of data now available,in
particular from the CoRoT and Kepler missions, require a good understanding of
the relation between the observed quantities and the properties of the
underlying stellar structure. Kallinger et al. 2012 found a relation between
their determination of the asymptotic phase of radial oscillations in evolved
stars and the evolutionary state, separating ascending-branch red giants from
helium-burning stars in the `red clump'. Here we provide a detailed analysis of
this relation, which is found to derive from differences between these two
classes of stars in the thermodynamic state of the convective envelope. There
is potential for distinguishing red giants and clump stars based on the phase
determined from observations that are too short to allow distinction based on
determination of the period spacing for mixed modes. The analysis of the phase
may also point to a better understanding of the potential for using the
helium-ionization-induced acoustic glitch to determine the helium abundance in
the envelopes of these stars.Comment: MNRAS, in the pres
Tests of the asymptotic large frequency separation of acoustic oscillations in solar-type and red giant stars
Asteroseismology, i.e. the study of the internal structures of stars via
their global oscillations, is a valuable tool to obtain stellar parameters such
as mass, radius, surface gravity and mean density. These parameters can be
obtained using certain scaling relations which are based on an asymptotic
approximation. Usually the observed oscillation parameters are assumed to
follow these scaling relations. Recently, it has been questioned whether this
is a valid approach, i.e., whether the order of the observed oscillation modes
are high enough to be approximated with an asymptotic theory. In this work we
use stellar models to investigate whether the differences between observable
oscillation parameters and their asymptotic estimates are indeed significant.
We compute the asymptotic values directly from the stellar models and derive
the observable values from adiabatic pulsation calculations of the same models.
We find that the extent to which the atmosphere is included in the models is a
key parameter. Considering a larger extension of the atmosphere beyond the
photosphere reduces the difference between the asymptotic and observable values
of the large frequency separation. Therefore, we conclude that the currently
suggested discrepancies in the scaling relations might have been overestimated.
Hence, based on the results presented here we believe that the suggestions of
Mosser et al. (2013) should not be followed without careful consideration.Comment: 6 pages, 4 figures, 1 table, accepted for publication by MNRAS as a
Letter to the Edito
Propagation of spatially entangled qudits through free space
We show the propagation of entangled states of high-dimensional quantum
systems. The qudits states were generated using the transverse correlation of
the twin photons produced by spontaneous parametric down-conversion. Their
free-space distribution was performed at the laboratory scale and the
propagated states maintained a high-fidelity with their original form. The use
of entangled qudits allow an increase in the quantity of information that can
be transmitted and may also guarantee more privacy for communicating parties.
Therefore, studies about propagating entangled states of qudits are important
for the effort of building quantum communication networks.Comment: 5 Pages, 4 Figures, REVTeX
Generation of maximally entangled states of qudits using twin photons
We report an experiment to generate maximally entangled states of
D-dimensional quantum systems, qudits, by using transverse spatial correlations
of two parametric down-converted photons. Apertures with D-slits in the arms of
the twin fotons define the qudit space. By manipulating the pump beam correctly
the twin photons will pass only by symmetrically opposite slits, generating
entangled states between these differents paths. Experimental results for
qudits with D=4 and D=8 are shown. We demonstrate that the generated states are
entangled states.Comment: 04 pages, 04 figure
Measuring the extent of convective cores in low-mass stars using Kepler data: towards a calibration of core overshooting
Our poor understanding of the boundaries of convective cores generates large
uncertainties on the extent of these cores and thus on stellar ages. Our aim is
to use asteroseismology to consistently measure the extent of convective cores
in a sample of main-sequence stars whose masses lie around the mass-limit for
having a convective core. We first test and validate a seismic diagnostic that
was proposed to probe in a model-dependent way the extent of convective cores
using the so-called ratios, which are built with and
modes. We apply this procedure to 24 low-mass stars chosen among Kepler targets
to optimize the efficiency of this diagnostic. For this purpose, we compute
grids of stellar models with both the CESAM2k and MESA evolution codes, where
the extensions of convective cores are modeled either by an instantaneous
mixing or as a diffusion process. Among the selected targets, we are able to
unambiguously detect convective cores in eight stars and we obtain seismic
measurements of the extent of the mixed core in these targets with a good
agreement between the CESAM2k and MESA codes. By performing optimizations using
the Levenberg-Marquardt algorithm, we then obtain estimates of the amount of
extra-mixing beyond the core that is required in CESAM2k to reproduce seismic
observations for these eight stars and we show that this can be used to propose
a calibration of this quantity. This calibration depends on the prescription
chosen for the extra-mixing, but we find that it should be valid also for the
code MESA, provided the same prescription is used. This study constitutes a
first step towards the calibration of the extension of convective cores in
low-mass stars, which will help reduce the uncertainties on the ages of these
stars.Comment: 27 pages, 15 figures, accepted in A&
Energy Dissipation and Trapping of Particles Moving on a Rough Surface
We report an experimental, numerical and theoretical study of the motion of a
ball on a rough inclined surface. The control parameters are , the diameter
of the ball, , the inclination angle of the rough surface and ,
the initial kinetic energy. When the angle of inclination is larger than some
critical value, , the ball moves at a constant average
velocity which is independent of the initial conditions. For an angle , the balls are trapped after moving a certain distance. The
dependence of the travelled distances on , and . is
analysed. The existence of two kinds of mechanisms of dissipation is thus
brought to light. We find that for high initial velocities the friction force
is constant. As the velocity decreases below a certain threshold the friction
becomes viscous.Comment: 8 pages RevTeX, 12 Postscript figure
Ray splitting in paraxial optical cavities
We present a numerical investigation of the ray dynamics in a paraxial
optical cavity when a ray splitting mechanism is present. The cavity is a
conventional two-mirror stable resonator and the ray splitting is achieved by
inserting an optical beam splitter perpendicular to the cavity axis. We show
that depending on the position of the beam splitter the optical resonator can
become unstable and the ray dynamics displays a positive Lyapunov exponent.Comment: 13 pages, 7 figures, 1 tabl
- …