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Four design methodologies for loop filters for a class of digital phase-locked loops 
(DPLLs) are presented. The first design maps an optimum analog filter into the digital 
domain; the second approach designs a filter that minimizes in discrete time a weighted 
combination o f  the variance of the phase error due to noise and the sum square of the 
deterministic phase error component; the third method uses Kalman filter estimation 
theory to design a filter composed o f  a least squares fading memory estimator and a 
predictor. The last design relies on classical control theory, including rules for the design 
o f  compensators. Linear analysis is used throughout the article to compare different 
designs, and includes stability, steady state performance and transient behavior of the 
loops. Design methodology is not critical when the loop update rate can be made high 
relative to loop bandwidth, as the performance approaches that of continuous time. 
For low update rates, however, the minimization method is significantly superior to the 
other methods. 

1. Introduction 
For many years phase-locked loops have been a cornerstone 

in phase coherent communication systems. Analog implemen- 
tations dominated the scenario until the late sixties. Then, as a 
result of rapid advances in the field of microelectronics, digital 
systems offering a myriad of advantages began to replace their 
analog counterparts. The trend now is to implement and design 
phase-locked loops digitally. 

Researchers in the field have explored several avenues for 
the implementation and design of digital phase-locked loops 
(DPLLs). An excellent survey of theoretical and experimental 
work accomplished in this area up to 1981 is presented by 
Lindsey and Chie (Ref. 1). The study, however, is not mature 
yet. The bulk of the research has concentrated on different 
ways to mechanize the loop phase detector, but very little 

effort has been spent in the design of loop filters. The typical 
design implements simply the discrete version of loop filters 
that have been widely used in analog phase-locked loops 
(AF'LLs) (Refs. 2, 3 ,  4, 5). This approach has a drawback, 
because the design process does not take into account the 
computational delays inherently present in any sampled- 
data system. These delays cause wider loop bandwidths 
than calculated from the continuous time equations, larger 
steady state phase errors for given loop bandwidths and 
dynamics, and reduced overall loop stability. 

The classical control theory approach to improve perfor- 
mance would be to insert a compensator into the system. A 
variety of compensators have been proposed, with lead, lag, 
and lead/lag being the most commonly used. Nagrath and 
Gopal (Ref. 6 )  comment that lead/lag compensators are not 
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very useful when open loop transfer function poles are present 
on the imaginary axis if dealing with continuous time systems 
(on the unit circle for digital systems). This occurs with DPLLs, 
and tuned (second order) compensators are required for sub- 
stanial improvements. The usefulness of this approach is, 
however, questionable. With a similar effort, one may employ 
more refined techniques and even obtain superior loop filters 
optimum in some sense. 

This lack of design methodology for loop filters has led to 
the recent works on the methods compared in this article. 
Here, we present a systematic comparison of several loop 
filters that have been proposed for a class of DPLLs wherein 
each sample of the phase detector output represents the 
average phase error since the previous sample. We evaluate 
four different methodologies for the design of such filters. 
These are as follows: 

(1) Impulse Invariance Transformation 

(2) Minimization Method 

(3) Estimation-Prediction 

(4) Classical Control Theory Approach 

Throughout the article, linear models for the PLLs are 
used, and the analysis is based on Z-transform theory due to 
the discrete nature of the loop component building blocks. 

The performance of each loop is measured in terms of gain 
margin for stability, steady state phase error for unmodeled 
dynamics, and transient distortion (sum of the squares of the 
deterministic phase errors at the sampling instants), These 
criteria are typical in linear system analysis to  assess the 
“quality” of a control system. For example, in case of DPLL, 
the closed-loop gain of the linearized model depends directly 
on the received signal power level, Thus to  maintain the loop 
stability under power level variations, it is desirable to have 
high gain margin for stability. 

In order to establish a fair basis of comparison, a conve- 
nient parameter (common to all the loops) must first be 
chosen. Then, the behavior of the different loops can be 
measured against this parameter. We find it convenient to  use 
the one-sided loop noise bandwidth as the common element, 
because the bandwidth appears explicitly in expressions that 
characterize the variance of the phase estimation error, regarded 
by communication systems engineers as one of the most 
important measures of PLL performance. 

The organization of the article is as follows. In Section 11, 
the basic DPLL configuration studied here is defined. In Sec- 
tion 111, the four methodologies for determining loop param- 
eters are summarized. In Section IV, transfer functions result- 

ing from the four methods are presented and compared. Loop 
stability, transient and steady state responses are compared in 
Section V. Finally, some general conclusions are drawn. 

II. Basic DPLL Configuration 
Several ideas have been suggested for the implementation 

of a DPLL, usually based on the mechanization of the phase 
detector. A notable example is the loop that attempts to  
track the zero crossings of the incoming signal; consequently, 
the sampling intervals are nonuniform (Ref. 1). In this article, 
however, uniform sampling is assumed. The main components 
of the general DPLL considered here are depicted in Fig. 1. 
The integrate-and-dump circuit integrates the phase detector 
output over T s, henceforth called the loop update time. The 
result is applied to the loop filter F(z), which is typically 
implemented in software, to produce the control signal. This 
signal drives a hardware numerically controlled oscillator 
(NCO), whose output frequency is proportional to the control 
signal. The output phase of the NCO is fed back to become 
the reference phase input to  the phase detector, to close the 
loop. 

The input signal in Fig. 1 isA cos(wt + e) t n(t)wheren(t)  
is white noise with one-sided power spectral density No W/Hz. 
The output of the sampler is A & + nk where & is the average 
phase error over the last sampling period, and nk is a white 
noise sample with variance IJ; = No/2T. An equivalent 
linearized model of the DPLL considered here is illustrated in 
Fig. 2. The generic transfer function KN,(z) takes into account 
the mathematical representation of the NCO, the mechaniza- 
tion of the phase detector and a normalized computational 
delay g. This normalized transport lag is the fraction of loop 
update time interval from the time that each phase measure- 
ment is made until the NCO input is updated. The effects of 
the phase detector integrate-and-dump filter, the transport 
lag g, and the NCO are derived elsewhere (Refs. 7,8) and can 
be included in a single transfer functionNg(z) given below. 

(1) 
T[(1 - g ) 2 z 2 + ( 1 + 2 g - 2 g 2 ) z t g 2 ]  

2z2 (z - 1)  
NJZ) = 

The DPLL implementation is facilitated when g = 1 corre- 
sponding to maximum possible delay. For this important 
example, Eq. (1) reduces to 

T z + l  1 Nl ( z )  =- - 
2(z - 1) z 2  

This can be recognized as the cascade of two computational 
delays and the discrete version of the integral operation using 
the trapezoidal rule. 
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111. Design of Loop Filters 
In this section we provide a synopsis of the underlying 

principles behind each methodology. Further details may be 
found in the references. 

A. Impulse Invariance Transformation (IIT) 

The first design (Ref, 7) involves the impulse invariance 
transformation (Ref. 9) of an optimum analog filter into a 
digital filter. Under this transformation, perfect integrators 
are approximated by 

1 T z  
s z - 1  
--- (3) 

Other transformations such as the backward difference and the 
right-side rectangular rule also indicate Eq. (3) as their equiva- 
lent sampled-data transformation. In this manner, the equiva- 
lent sampled-data loop filter parameters can be conveniently 
expressed in terms of the corresponding analog loop filter 
parameters such as bandwidth and damping ratio. 

An immediate advantage of this approach is that the theory 
of continuous time loops is very mature, and a wealth of useful 
knowledge has been accumulated. This information in many 
instances can be applied directly to  the resultant digital loops. 
As one would expect, the continuous and discrete time theories 
are very close when the loop update rate is very high compared 
to  loop bandwidth. 

B. Minimization (MIN) 

The minimization method (Ref. 10) applies optimal control 
theory concepts so as to arrive at a set of optimum digital 
filters for various input dynamics. The input to the loop is 
assumed to be the sum of a phase signal and white noise, the 
two being independent of each other. If u represents the 
closed loop rms phase jitter due to additive white noise and if 
the sum square of the deterministic phase error is represented 
by D , the design criterion is to minimize 

E = u2 +AD2 (4) 

where h is a Lagrange multiplier. The design procedure is car- 
ried out as follows: For given input phase dynamics, fixed 
update rate and Ng(z) ,  find a causal filter F(z)  that minimizes 
E in Eq. (4). The overall loop transfer function can be obtained 
as a function of A. Then, for any desired loop noise bandwidth, 
the multiplier h can be obtained. 

An analogous optimum design procedure using Wiener 
filtering theory was presented by Jaffe and Rechtin (Ref. 1 l ) ,  
leading to the loop filters that found widespread use in APLLs. 
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The same standard optimization technique was utilized later 
by Gupta (Ref. 12) to  design a digital-analog loop. 

C. Estimation-Prediction (E-P) 

The third method (Ref. 13) borrows estimation theory 
concepts and is particularly attractive to  Kalman filter users. 
The idea is illustrated in Fig. 3. Assume that the normaliza- 
tion is A = 1 .  Since Ng(z)  is known and realizable in hardware, 
it can also be implemented in software. This is done, and the 
same value of 8, which is subtracted in the phase detector is 
added back to the phase detector output in software, generat- 
ing 8,  + n, at the input to S(z) .  On the basis of this signal, 
the digital filter S(z )  predicts the frequency correction signal 
for the NCO and its equivalent software realization. The filter 
transfer function S(z )  is assumed to be of the following type 

where N is the number of transport lags, C(z)  is an estimator 
and D(z )  is a predictor. The design procedure is divided into 
five different steps. The first step is to.select a model for the 
received phase that includes known dynamics plus process and 
measurement noise. The second step is to  specify Ng(z). The 
next step is the selection of an estimator. For this example, a 
least squares fading memory estimator was selected. The esti- 
mator obtains a state estimate (phase, frequency and accelera- 
tion) applying an exponentially decaying weight to  past data 
and ignoring the pure delay. The fourth step is to compensate 
for the delay by designing an appropriate predictor. The pre- 
dictor uses the state estimate to  predict the phase N delays 
ahead. The last step checks for loop realizability and stability. 

D. Classical Control Theory Approach (CCT) 

The fourth approach is a heuristic method (Ref. 8). Here, 
classical control theory concepts are applied, including rules 
for the design of compensators. The idea is to select a realiz- 
able transfer function of the form 

The quadratic term in z cancels the transport lags, and A ( z ) ,  
B(z )  and C(z )  are polynomials in z such that F(z )  is a realiz- 
able filter transfer function. Based on repeated trials and 
errors, convenient locations of the roots of these polynomials 
are selected. This is done via root locus analysis. 

Basically, the goal is to produce an overall stable loop with 
reasonable transient and steady state performance, using well- 
known rules for the construction of root locus plots. The selec- 



tion of the pole and zero locations of the filter is informal and 
requires some design experience. 

IV. Loop Filter Transfer Functions 
In this section we present a collection of results obtained 

with each of the design procedures outlined in the previous 
sections. For the sake of completeness, we provide their corre- 
sponding filter transfer functions. For space limitations, 
detailed derivations are omitted. 

A. Impulse Invariance Transformation (IIT) 

The sampled-data filter has the form (Ref. 7) 

where 

G,  = rdlAKT 

G2 = rd2 /AKT 

G3 = krd3/AKT 

In Eq. (8), the coefficients are those employed in continuous 
time loop filters. The parameter r is typically 2 or 4, and is 
equal to  4 f 2  where f is the damping ratio. The parameter k is 
a type 3 loop gain component ( k  = 0 for type 2 loop), with 
typical values ranging from 114 to 112. The coefficient BA is 
the noise bandwidth of the underlying analog loop. The param- 
eters A and K are those appearing in Fig. 2. 

B. Minimization (MIN) 

For a type 2 system the loop filter is given by (Ref. 9) 

2 F(z )  = - K T  

(hoz - h, ) z2  
X 

{4uz2 + (sa + 4 b ) z  + (5a + 3b  + c - d ) }  ( z  - 1 )  

(9) 

The coefficients a ,  b ,  c, and d satisfy the identity 

u z 3 + b z 2 + c z + d  = ( z + l ) ( Z z 2 + b z + q  (10) 

where ii, b, and Fsatisfy the following set of equations 

where No = one-sided spectral density of input noise. The pre- 
vious set of equations produces cancellation of a zero at z = -1 
by a pole at z = -1. Imperfect cancellation can cause instabil- 
ity problems; therefore, a slight modification to  the previous 
equations is used where the factor ( z  + 1 )  in Eq. (10) is replaced 
by ( z  + 4 ) .  The value of 4 may be in the range of 0.9 to 0.999. 

The type 3 loop filter has the form 

2 
K T  F(z )  = ~ 

@z2 + (ii - 2 E ) z  + (Z t c"- E)}z2 x 
( z  - 1 ) 2  {16az2 + 16(3u + b ) z  + [16(6u + 3b + c )  - c " ] }  

The various filter coefficients are given in terms of a set of 
four nonlinear simultaneous equations that will not be repro- 
duced here. The set of equations again produces a pole-zero 
cancellation at z = - 1 ,  that demands a slight modification. The 
reader may refer to Ref. 10 for a simple method to  obtain the 
values of these coefficients. 

C. Estimator-Predictor (E-P) 

The loop filter is given by (Ref. 13) 

with S ( z )  as indicated in Eq. (5). For a type 2 loop with a 
fading memory filter with estimator decay factor (Y: 0 < (Y < 1 ~ 

the loop filter transfer function is given by 

(14) 
(uz - b ) z 2  

c [ z 2  + ( 1  + b ) z  + b ]  ( Z  - 1) 
F ( z )  = 
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where where 

a = 3 - 4 0  Pl = -0.173 

b = 2 ( 1  - a )  ( 1  5) P2 = -0.999 

c = T / 2  - z1 - z2 = 0.960 

It is noted that these parameters were chosen for a specific 
application, in which the product of the one-sided loop noise 
bandwidth BL times T is in the neighborhood of 0.15. No 
design rules are given for other BL T .  

The fading memory type 3 loop is 

(16)  
(az2 t bz t c )  z2  

d(z2 t ez t c )  (z  - 1 ) 2  
F(z)  = 

where 

a = 6 - 9 a  

b = 9 a - 8  

c = 3 ( 1  - a )  (17)  

d = TI2 

e = 4 - 3 a  

Special attention must be paid in the implementation of 
S(z) ,  because a pole-zero cancellation at z = - 1  occurs as in the 
minimization method. 

D. Classical Control Theory (CCT) 

V. Performance Comparisons 
An indication of the relative merits of the individual con- 

figurations can be acquired using standard techniques of linear 
control systems. In this section, we employ three common 
criteria: ( 1 )  computation of stability gain margin, ( 2 )  calcula- 
tion of steady state errors, and (3) calculation of transient 
distortion, defined as the sum of the squared phase estima- 
tion errors at the sampling instants. The output in all cases is 
graphical. In the design of PLLs, it is customary to  treat the 
one-sided noise bandwidth as the independent variable and 
characterize loop behavior as a function of this parameter. We 
find it convenient to use, instead, noise bandwidth normalized 
(multiplied) by the loop update time. 

In computing the results, it should be noted that Ref. 10 
used symbols Brz and B for unnormalized and normalized 

The last design procedure assumes a normalized computa- 
tional delay g = 1/2 in Eq. ( I ) ,  while the other three methods 
assume g = 1 .  This, however, complicates the loop implements- 
tion. For a type 2 loop, the filter used in Ref. 8 is 

two-sided loop bandwidth respectively, whereas we use them 
in the more conventional way to denote one-sided loop band- 
width. For the CCT approach, the results illustrated for the 
design example (Ref. 8) assume an update time T = 1 s. 

A. Stability and Gain Margin ( z  - z1 ) 2 2  

( Z - P 1 ) ( Z - P 2 ) ( Z - 1 )  F(z )  = (18)  It is well known that second order, type 2 APLLs are 
unconditionally stable, and that third order, type 3 APLLs 
are unstable for low loop gains, but stable otherwise (Refs. 2 ,  
3, 4, 5 ) .  Digital PLLs, however, are only conditionally stable. 
Type 2 DPLLs are unstable for high ‘Ioop gains, and type 3 
DPLLs are unstable for both, low and high loop gains. To 
differentiate these two extreme cases in computing gain 
margins, we use the terms “lower” and “upper” gain margin, 

where 
’ 

PI = -0.173 

Pz = -0.999 

z1  = 0.960 
respectively. 

In Fig. 4 we examine the stability of the various configura- 
tions for a type 2 loop. The CCT loop is somewhat superior 
because it assumes a normalized computational delay g = 1/2 .  
The other three loops assume g = 1 and have performances 
that differ among themselves by 2 dB at most, with the MIN 

For a type 3 loop, 

(z - Z 1 ) ( Z - Z 2 ) Z 2  
F(z )  = (19)  

( Z - P 1 ) ( Z - P 2 ) ( Z - 1 ) 2  method being the best. 
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In Fig. 5 we plot the lower gain margin for type 3 loops. 
It is important to emphasize that the CCT loop was designed 
with fixed compensation, not depending on desired BL T .  
With this compensation, it cannot attain normalized band- 
widths smaller than 0.06, because the loop becomes unstable. 
Any redesign for lower BLT would change both upper and 
lower gain margins. Upper gain margins for type 3 loops are 
depicted in Fig. 6 .  The MIN method is slightly better than the 
IIT and E P  methods in upper gain margin, and slightly worse 
in lower gain margin. 

B. Steady State Performance 

For both APLLs and DPLLs, the steady state phase error 
due to step acceleration and jerk is approximately propor- 
tional to  the inverse of second and third power of the band- 
width for types 2 and 3 loops, respectively. It is convenient 
then, to define the phase error coefficients C, for type 2 loops 
and C, for type 3 loops. The use of these coefficients is 
advantageous because they exhibit slower variations with 
bandwidth than steady state errors. Thus, the steady state 
phase errors are related to bandwidth and phase error coeffi- 
cients in the following way: 

Type n : 

where e(") denotes the n t h  highest nonzero derivative of the 
input phase. 

Figure 7 concentrates on type 2 loops. Notice from Eq.(20) 
that a smaller phase error coefficient implies a smaller steady 
state phase error. The MIN method is uniformly better than 
all of the other methods for all BLT.  For normalized band- 
widths smaller than 0.02, both the IIT and MIN filter are 
superior to the E-P method and produce essentially the same 
results. This is because the E-P method used a fading memory 
filter, which has more damping than the IIT filter with r = 2. 
For larger bandwidths, the MIN filter is better. The poorest 
performance is provided by the CCT filter. 

Figure 8 presents similar results and conclusions for type 3 
loops. Again, the MIN method is best for all BLT. 

The importance of these results is that there are cases 
when significant performance improvements can be realized 
using the MIN method. Suppose T cannot be reduced, due to 
implementation limitations. In such situations using the MIN 
method of design, for a specified maximum steady state phase 

error, a smaller value of loop noise bandwidth is obtained 
compared to  that achievable from other design methods. 

For example, for the type 3 loop, using Fig. 8, C3/BLT 
is approximately 6.7 at BLT = 0.2 for the MIN method and at 
BLT = 0.3 for the IIT and E-P methods. Thus a 1.8 dB (factor 
of 1.5) higher loop SNR can be achieved for the same lag 
error using the MIN method. In some cases, for very wide 
bandwidths, only the MIN method is satisfactory. 

C. Transient Performance 

The integral square error or transient distortion is defined 
here as the sum of the squares of the deterministic phase 
error components at the loop update instants. The summa- 
tion runs from zero to infinity. The integral square error is 
plotted in Figs. 9 and 10 for type 2 and 3 loops. In the former 
case we applied a unit phase ramp, computed the square error 
and normalized (divided by T z )  the result. Type 3 loops 
assumed a unit frequency ramp, and the result was normalized 
by T 4 .  The MIN loop is the best in both cases, as it should be 
due to the optimization procedure. The CCT loop is the worst 
for type 2 (except for large normalized bandwidths), and the 
E-P loop is the worst for type 3 loops. In this last case, the gap 
between the MIN and the E-P loops is several orders of magni- 
tude. This is probably due to  selecting fading memory filters 
for the E-P case. 

VI. Conclusions 
Four classes of digital filters have been presented that have 

been proposed recently for a class of DPLLs wherein each 
sample of the phase detector output represents the average 
phase error since the previous sample. Whereas the filters in 
the first class are the mapped versions of the corresponding 
optimum analog filter, the filters in the second class are 
derived using optimal control theory. A suboptimal version 
of fading memory Kalman filter/predictor results in filters 
of class 3, while filters of the last class are designed on the 
basis of classical control theory. 

On the basis of the results depicted in Figs. 4-10 we con- 
clude that the filter obtained using the minimization method 
is the best in all regards, except in low gain margin for type 3 
loops, where it is the worst. Since its lower gain margin is 
adequate, it is normally the best choice. 

When the system is not update rate limited, so that B,T is 
small, the Impulse Invariance or continuous time analogy is 
very good. In fact, the Impulse Invariance and minimization 
filter performances converge to the same values for all the 
criteria. This agrees with intuition, because in the limit as 
the normalized bandwidth goes to zero, the Impulse Invari- 

, 
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ance filter converges. t o  a continuous time filter whose trans- 
fer function is derived using the same optimization technique 
that is employed by the minimization filter. 

The specific E-P loops considered here use fading memory 
filters with a damping greater than that of IIT loops with r = 2. 
Therefore, they do not have as good a performance as the IIT 
and MIN loops even for small B,T. 

The loops derived from classical control theory were 
designed only for a limited range of BLT. They perform 

reasonably well there. Their main disadvantage is lack of an 
overall design method, resulting in loops with performance 
depending on the designer’s skill, experience and intuition. 

The main instance in which it is important to  use the 
minimization method over the IIT method is when BLT is not 
small. This occurs when the update rate has a maximum, due 
to implementation restrictions. Performance is then signifi- 
cantly better for the minimization method than for all other 
methods studied. In some cases, only the minimization method 
results in a usable design. 
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Fig. 1. Digital phaselocked loop 
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Fig. 2. Linear baseband sampled data loop model 
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Fig. 3. DPLL with estimator-predictor 
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Fig. 6. Upper gain margin for type 3 DPLL 
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Fig. 8. Steady state phase error performance of type 3 DPLL 

Fig. 7. Steady state phase error performance of type 2 DPLL 
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Fig. 9. Transient response of type 2 DPLL 

Fig. 10. Transient response of type 3 DPLL 
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