37 research outputs found

    ТЕЧЕНИЕ ЭПИДЕМИЧЕСКОГО ПАРОТИТА В ПЕРИОД ПОДЪЕМА ЗАБОЛЕВАЕМОСТИ, ПО ДАННЫМ РЕСПУБЛИКАНСКОГО ЦЕНТРА ИНФЕКЦИОННЫХ БОЛЕЗНЕЙ Г. МАХАЧКАЛЫ

    Get PDF
    The aim of the study was to study the course of epidemic parotitis in patients with a sharp increase in the incidence rate in Dagestan in 2017, and to analyze the coverage of vaccination against this infection.In the Republic of Dagestan, from January to December 2017, there was an increase in the incidence of mumps infection — 2,632 cases, in 2016 —148, in 2015 — 1 case. It turned out that 1492 (56.6%) of 2,632 patients with epidemic parotitis in 2017 were not vaccinated.Clinical and laboratory monitoring of 449 patients with epidemic parotitis hospitalized in the Republican Center for Infectious Diseases was carried out. The greatest number of cases was between the ages of 12 and 35 years. The clinical picture of parotitis infection in adults did not differ from that of children. First parotid glands are affected, then the lesions of other glandular organs are joined — pancreatitis (51.2%), orchitis (32%) and CNS — meningitis (16%). Outcomes of the disease were favorable. Цель исследования: изучить течение эпидемического паротита у больных при резком увеличении заболеваемости в Дагестане в 2017 г. и проанализировать охват вакцинацией против данной инфекции. В республике Дагестан с января по декабрь 2017 г. зарегистрировано повышение заболеваемости паротитной инфекцией — 2632 случая, в 2016 г. —148, в 2015 г. — 1 случай. Оказалось, что 1492 (56,6%) человека из 2632 заболевших в 2017 г. эпидемическим паротитом не были привиты. Проведено клинико-лабораторное наблюдение 449 больных эпидемическим паротитом, госпитализированных в Республиканский центр инфекционных болезней г. Махачкалы. Наибольшее количество заболевших было в возрасте от 12 до 35 лет. Клиническая картина паротитной инфекции у взрослых не отличалась от таковой у детей. Сначала поражаются околоушные слюнные железы, затем присоединяются поражения других железистых органов — панкреатит (51,2%), орхит (32%) и ЦНС — менингит (16%).  Исходы заболевания отмечались благоприятные

    The GRANDMA network in preparation for the fourth gravitational-wave observing run

    Get PDF
    GRANDMA is a world-wide collaboration with the primary scientific goal ofstudying gravitational-wave sources, discovering their electromagneticcounterparts and characterizing their emission. GRANDMA involves astronomers,astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now atruly global network of telescopes, with (so far) 30 telescopes in bothhemispheres. It incorporates a citizen science programme (Kilonova-Catcher)which constitutes an opportunity to spread the interest in time-domainastronomy. The telescope network is an heterogeneous set of already-existingobserving facilities that operate coordinated as a single observatory. Withinthe network there are wide-field imagers that can observe large areas of thesky to search for optical counterparts, narrow-field instruments that dotargeted searches within a predefined list of host-galaxy candidates, andlarger telescopes that are devoted to characterization and follow-up of theidentified counterparts. Here we present an overview of GRANDMA after the thirdobserving run of the LIGO/VIRGO gravitational-wave observatories in 201920202019-2020and its ongoing preparation for the forthcoming fourth observational campaign(O4). Additionally, we review the potential of GRANDMA for the discovery andfollow-up of other types of astronomical transients.<br

    GRANDMA and HXMT Observations of GRB 221009A -- the Standard-Luminosity Afterglow of a Hyper-Luminous Gamma-Ray Burst

    Full text link
    GRB 221009A is the brightest Gamma-Ray Burst (GRB) detected in more than 50 years of study. In this paper, we present observations in the X-ray and optical domains after the GRB obtained by the GRANDMA Collaboration (which includes observations from more than 30 professional and amateur telescopes) and the Insight-HXMT Collaboration. We study the optical afterglow with empirical fitting from GRANDMA+HXMT data, augmented with data from the literature up to 60 days. We then model numerically, using a Bayesian approach, the GRANDMA and HXMT-LE afterglow observations, that we augment with Swift-XRT and additional optical/NIR observations reported in the literature. We find that the GRB afterglow, extinguished by a large dust column, is most likely behind a combination of a large Milky-Way dust column combined with moderate low-metallicity dust in the host galaxy. Using the GRANDMA+HXMT-LE+XRT dataset, we find that the simplest model, where the observed afterglow is produced by synchrotron radiation at the forward external shock during the deceleration of a top-hat relativistic jet by a uniform medium, fits the multi-wavelength observations only moderately well, with a tension between the observed temporal and spectral evolution. This tension is confirmed when using the extended dataset. We find that the consideration of a jet structure (Gaussian or power-law), the inclusion of synchrotron self-Compton emission, or the presence of an underlying supernova do not improve the predictions, showing that the modelling of GRB22109A will require going beyond the most standard GRB afterglow model. Placed in the global context of GRB optical afterglows, we find the afterglow of GRB 221009A is luminous but not extraordinarily so, highlighting that some aspects of this GRB do not deviate from the global known sample despite its extreme energetics and the peculiar afterglow evolution.Comment: Accepted to ApJL for the special issue, 37 pages, 23 pages main text, 6 tables, 13 figure

    Ready for O4 II: GRANDMA Observations of Swift GRBs during eight-weeks of Spring 2022

    Full text link
    We present a campaign designed to train the GRANDMA network and its infrastructure to follow up on transient alerts and detect their early afterglows. In preparation for O4 II campaign, we focused on GRB alerts as they are expected to be an electromagnetic counterpart of gravitational-wave events. Our goal was to improve our response to the alerts and start prompt observations as soon as possible to better prepare the GRANDMA network for the fourth observational run of LIGO-Virgo-Kagra (which started at the end of May 2023), and future missions such as SM. To receive, manage and send out observational plans to our partner telescopes we set up dedicated infrastructure and a rota of follow-up adcates were organized to guarantee round-the-clock assistance to our telescope teams. To ensure a great number of observations, we focused on Swift GRBs whose localization errors were generally smaller than the GRANDMA telescopes' field of view. This allowed us to bypass the transient identification process and focus on the reaction time and efficiency of the network. During 'Ready for O4 II', 11 Swift/INTEGRAL GRB triggers were selected, nine fields had been observed, and three afterglows were detected (GRB 220403B, GRB 220427A, GRB 220514A), with 17 GRANDMA telescopes and 17 amateur astronomers from the citizen science project Kilonova-Catcher. Here we highlight the GRB 220427A analysis where our long-term follow-up of the host galaxy allowed us to obtain a photometric redshift of z=0.82±0.09z=0.82\pm0.09, its lightcurve elution, fit the decay slope of the afterglows, and study the properties of the host galaxy

    The GRANDMA network in preparation for the fourth gravitational-wave observing run

    No full text
    Observatory Operations: Strategies, Processes, and Systems IX 2022, Montreal, Jul 17-22, 2022.--Proceedings of SPIE - The International Society for Optical Engineering vol. Code 12186 Article number 121861H.-- Full list of authors: Agayeva, S.; Aivazyan, V; Alishov, S.; Almualla, M.; Andrade, C.; Antier, S.; Bai, J-M; Baransky, A.; Basa, S.; Bendjoya, P.; Benkhaldoun, Z.; Beradze, S.; Berezin, D.; Bhardwaj, U.; Blazek, M.; Burkhonov, O.; Burns, E.; Caudill, S.; Christensen, N.; Colas, F.; Coleiro, A.; Corradi, W.; Coughlin, M. W.; Culino, T.; Darson, D.; Datashvili, D.; de Wasseige, G.; Dietrich, T.; Dolon, F.; Dornic, D.; Dubouil, J.; Ducoin, J-G; Duverne, P-A; Esamdin, A.; Fouad, A.; Guo, F.; Godunova, V; Gokuldass, P.; Guessoum, N.; Gurbanov, E.; Hainich, R.; Hasanov, E.; Hello, P.; Hussenot-Desenonges, T.; Inasaridze, R.; Iskandar, A.; Ishida, E. E. O.; Ismailov, N.; du Laz, T. Jegou; Kann, D. A.; Kapanadze, G.; Karpov, S.; Kiendrebeogo, R. W.; Klotz, A.; Kochiashvili, N.; Kaeouach, A.; Kneib, J-P; Kou, W.; Kruiswijk, K.; Lombardo, S.; Lamoureux, M.; Leroy, N.; Su, A. Le Van; Mao, J.; Masek, M.; Midavaine, T.; Moeller, A.; Morris, D.; Natsvlishvili, R.; Navarete, F.; Nissanke, S.; Noonan, K.; Noysena, K.; Orange, N. B.; Peloton, J.; Pilloix, M.; Pradier, T.; Prouza, M.; Raaijmakers, G.; Rajabov, Y.; Rivet, J-P; Romanyuk, Y.; Rousselot, L.; Ruenger, F.; Rupchandani, V; Sadibekova, T.; Sasaki, N.; Simon, A.; Smith, K.; Sokoliuk, O.; Song, X.; Takey, A.; Tillayev, Y.; Melo, I. Tosta E.; Turpin, D.; Postigo, A. de Ugarte; Vardosanidze, M.; Wang, X. F.; Vernet, D.; Vidadi, Z.; Zhu, J.; Zhu, Y.GRANDMA is a world-wide collaboration with the primary scientific goal of studying gravitational-wave sources, discovering their electromagnetic counterparts and characterizing their emission. GRANDMA involves astronomers, astrophysicists, gravitational-wave physicists, and theorists. GRANDMA is now a truly global network of telescopes, with (so far) 30 telescopes in both hemispheres. It incorporates a citizen science programme (Kilonova-Catcher) which constitutes an opportunity to spread the interest in time-domain astronomy. The telescope network is an heterogeneous set of already-existing observing facilities that operate coordinated as a single observatory. Within the network there are wide-field imagers that can observe large areas of the sky to search for optical counterparts, narrow-field instruments that do targeted searches within a predefined list of host-galaxy candidates, and larger telescopes that are devoted to characterization and follow-up of the identified counterparts. Here we present an overview of GRANDMA after the third observing run of the LIGO/VIRGO gravitational-wave observatories in 2019-2020 and its ongoing preparation for the forthcoming fourth observational campaign (O4). Additionally, we review the potential of GRANDMA for the discovery and follow-up of other types of astronomical transients. © COPYRIGHT SPIE.AdUP and SA acknowledge financial support from the Cote D'Azur University through a CSI recherche grant awarded to the GRANDMA project (PI: S. Antier). SA acknowledges the financial support of the Programme National Hautes Energies (PNHE). SA acknowledges the financial support of MITI CNRS Sciences participatives. UBAI acknowledges support from the Ministry of Innovative Development through projects FA-Atech-2018-392 and VA-FA-F-2-010. RI acknowledges Shota Rustaveli National Science Foundation (SRNSF) grant No -RF/18-1193. TAROT has been built with the support of the Institut National des Sciences de l'Univers, CNRS, France. MP, SK and MM are supported by European Structural and Investment Fund and the Czech Ministry of Education, Youth and Sports (Projects CZ.02.1.01/0.0/0.0/16 013/0001403, CZ.02.1.01/0.0/0.0/18 046/0016007 and CZ.02.1.01/0.0/0.0/15 003/0000437). NBO and DM acknowledge financial support from NASA MUREP MIRO award 80NSSC21M0001, NASA EPSCoR award 80NSSC19M0060, and NSF EiR award 1901296. PG acknowledges financial support from NSF EiR award 1901296. DAK acknowledges support from Spanish National Research Project RTI2018-098104-J-I00 (GRBPhot). XW is supported by the National Science Foundation of China (NSFC grants 12033003 and 11633002), the Scholar Program of Beijing Academy of Science and Technology (DZ:BS202002), and the Tencent Xplorer Prize. J.Mao is supported by the National Natural Science Foundation of China 11673062 and the Oversea Talent Program of Yunnan Province. The work of FN is supported by NOIRLab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The GRANDMA consortium thank the amateur participants to the kilonova-catcher program. The kilonova-catcher program is supported by the IdEx Universit ' e de Paris, ANR-18-IDEX-0001. This research made use of the cross-match service provided by CDS, Strasbourg. MC acknowledges support from the National Science Foundation with grant numbers PHY-2010970 and OAC-2117997. MC and CA acknowledge support from a "Preparing for Astrophysics with LSST" grant with grant number KSI-2. GR acknowledges financial support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) through the Projectruimte and VIDI grants (PI: Nissanke). Thanks to the National Astronomical Research Institute of Thailand (Public Organization), based on observations made with the Thai Robotic Telescope under program ID TRTC08D 005 and TRTC09A 002. S. Leonini thanks M. Conti, P. Rosi, and L. M. Tinjaca Ramirez. SA thanks Etienne Bertrand and le "Club des Cepheides" for their observations of ZTF21abxkven.With funding from the Spanish government through the Severo Ochoa Centre of Excellence accreditation SEV-2017-0709Peer reviewe

    Глибинна будова і геодинамічні особливості земної кори західного узбережжя Каспійського моря

    No full text
    The article presents 2D gravity model of the geodynamic profile of Samur—Baku, located on the western coast of the Caspian Sea and the geodynamic characteristics of the earth crust in the profile region are studied. 2D gravity model is made by the matching method of density boundaries. The boundaries of the lower layer of crust (28—32 km) and the Moho surface (47—57 km) are specified. Along the profile, the velocity curves of modern vertical and horizontal motions are analyzed. On the curve of velocities of modern vertical motions on the boundary of the rise and fall of the earth’s crust, places of stress accumulation zones along the profile were identified. Modern vertical motions of the earth’s crust show that along the profile the main stress accumulation zones are located in the immediate vicinity of the points Khudat, Charkhi, Siazan and Baku. The average deformation velocity between two GPS points was calculated by dividing the velocities difference to the distance between these points. It is established that the zone of the highest deformation velocity (97,5 nanostrain/year) coincides with the zone of the Siazan fault, the zone of the Gusar-Shabran edge trough is characterized by a velocity of 22,3 nanostrain/year. The low deformation velocity (8,9 nanostrain/year) coincides with the zone of the Shamakhi-Gobustan synclinorium. These zones of stress accumulation in the gravity model coincide with the protrusions along the surface of the upper and lower layers of the consolidated crust and marked by hypocenters of earthquakes. The values of the radii of foci of earthquakes that create additional perceptible stresses that affect the geodynamic conditions of the earth crust in the profile region are determined.Приведена 2D гравитационная модель по геодинамическом профиля Самур-Баку, расположенном на западном побережье Каспийского моря. Изучено геодинамические характеристики коры в районе профиля. 2D гравитационная модель составлена методом подбора плотностных границ. Проведено уточнение границы нижнего слоя коры (28-32 км) и поверхности раздела Moxo (47-57 км). Вдоль профиля проанализированы кривые скорости современных вертикальных и горизонтальных движений. По кривым скорости современных вертикальных движений на грани подъема и опускания земной коры выделены места аккумуляции напряженности по профилю. Показано также, что вдоль профиля основные зоны аккумуляции напряжений размещаются в непосредственной близости от пунктов Худат, Чархи, Сиазань и Баку. Среднее значение скорости деформации между двумя GPS точками вычислено путем деления разницы скоростей на расстояние между этими точками. Установлено, что зона максимальной скорости деформации (97,5 nanostrain / год) совпадает с зоной Сиазанського разлома, зона Гycаp-Шабранскому краевого прогиба характеризуется скоростью деформации 22,3 nanostrain / год. Низкая скорость деформации (8,9 nanostrain / год) совпадает с зоной Шамаха-Гобустанский синклинорию. Зоны концентрирования напряжений в гравитационной модели соответствуют выступлениям по поверхности верхнего и нижнего слоев консолидированной коры и зафиксированы очаг землетрясений. Определены радиусы очагов землетрясений, которые создают дополнительные ощутимые напряжения, которые влияют на геодинамические условия коры в районе профиля.Наведено 2D гравітаційну модель по геодинамічному профілю Самур—Баку, розташованому на західному узбережжі Каспійського моря. Вивчено геодинамічні характеристики кори в районі профілю. 2D гравітаційна модель складена методом підбору густинних меж. Проведено уточнення межі нижнього шару кори (28—32 км) і поверхні поділу Moxo (47—57 км). Уздовж профілю проаналізовано криві швидкості сучасних вертикальних і горизонтальних рухів. За кривими швидкості сучасних вертикальних рухів на межі піднімання і опускання земної кори виділено місця акумуляції напруженості за профілем. Показано також, що вздовж профілю основні зони акумуляції напружень розміщуються у безпосередній близькості від пунктів Худат, Чархи, Сіазань і Баку. Середнє значення швидкості деформації між двома GPS точками обчислено шляхом ділення різниці швидкостей на відстань між цими точками. Встановлено, що зона найбільшої швидкості деформації (97,5 nanostrain/рік) збігається із зоною Сіазанського розлому, зона Гycаp-Шабранського крайового прогину характеризується швидкістю деформації 22,3 nanostrain/рік. Низька швидкість деформації (8,9 nanostrain/рік) збігається із зоною Шамаха-Гобустанського синклинорію. Зони концентрування напружень у гравітаційної моделі відповідають виступам по поверхні верхнього і нижнього шарів консолідованої кори і зафіксовані гіпоцентрами землетрусів. Визначено радіуси осередків землетрусів, що створюють додаткові відчутні напруження, які впливають на геодинамічні умови кори в районі профілю

    Necessary conditions for quasi-singular controls in the stochastic optimal control problem with delayed argument

    No full text

    Legal Value Orientations as Basic Category of Law Students’ Legal Culture

    No full text
    An obvious connection of legal culture, value orientations and legal consciousness was established by cross-disciplinary analysis. Legal culture is considered as a whole in relation to legal value orientations. The necessity of forming legal value orientations is proved, as without them it is impossible to achieve a high level of legal culture and to ensure a student’s behavior within the framework of the law. This component is analyzed as a compulsory element of a law school student’s legal consciousness. The concept of legal value orientations is defined from the standpoint of different approaches and from the point of view of various authors, wherein these orientations are studied through the cognitive-volitional component. The relation of legal value orientations and legal beliefs is analyzed. It is offered to comply with a number of pedagogical conditions, to apply certain methods and techniques, which will influence the educational process and will promote forming legal value orientations. The need for developing value orientations in students is proved; it is shown that without value orientations it is impossible to reach a high level of legal culture, to engage in civic activities and to become a law-abiding citizen. Legal value orientations are studied as a construction material of legal culture and govern a student’s legal behavior
    corecore