7 research outputs found

    Struktur Komunitas Fitoplankton di Perairan Tanjung Balai Kota Kabupaten Karimun Provinsi Kepulauan Riau

    Full text link
    Fitoplankton merupakan produsen primer di suatu perairan yang dapat menunjang kehidupansumberdaya hayati perairan lainnya dan menempati trofik level pertama dalamrantai makanan. Penelitian ini bertujuan untuk mengetahui struktur komunitas fitoplanktonserta hubungan antara konsentrasi fosfat dan nitrat dengan kelimpahan fitoplankton.Penelitian ini dilaksanakan pada bulan januari 2017 di perairan TanjungBalai Kota Kabupaten Karimun Provinsi Kepulauan Riau. Hasil dari penelitian ini ditemukan27 genus dari fitoplankton yang berasal dari 3 kelas, 7 ordo dan 16 famili.Adapun nilai kelimpahan fitoplankton berkisar antara 48 - 79 ind/l. Nilai indeks keanekaragaman(H\u27) berkisar antara 2,60 – 2,83, indeks dominasi (C) berkisar antara 0,20 –0,23 dan indeks keseragaman (E) berkisar antara 0,77 – 0,80. Berdasarkan uji regresilinear sederhana, model matematis konsentrasi fosfat dengan kelimpahan fitoplanktonyaitu y = 10.90 + (656.4)x dengan nilai korelasi (r) = 0,42 (tergolong sedang). Modelmatematis konsentrasi nitrat dengan kelimpahan fitoplankton yaitu y = 138.3 + (-1207)x dengan nilai korelasi (r) = 0,21 (tergolong lemah

    Subcortical brain volume, regional cortical thickness, and cortical surface area across disorders: findings from the ENIGMA ADHD, ASD, and OCD Working Groups

    Get PDF
    Objective Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that frequently co-occur. We aimed to directly compare all three disorders. The ENIGMA consortium is ideally positioned to investigate structural brain alterations across these disorders. Methods Structural T1-weighted whole-brain MRI of controls (n=5,827) and patients with ADHD (n=2,271), ASD (n=1,777), and OCD (n=2,323) from 151 cohorts worldwide were analyzed using standardized processing protocols. We examined subcortical volume, cortical thickness and surface area differences within a mega-analytical framework, pooling measures extracted from each cohort. Analyses were performed separately for children, adolescents, and adults using linear mixed-effects models adjusting for age, sex and site (and ICV for subcortical and surface area measures). Results We found no shared alterations among all three disorders, while shared alterations between any two disorders did not survive multiple comparisons correction. Children with ADHD compared to those with OCD had smaller hippocampal volumes, possibly influenced by IQ. Children and adolescents with ADHD also had smaller ICV than controls and those with OCD or ASD. Adults with ASD showed thicker frontal cortices compared to adult controls and other clinical groups. No OCD-specific alterations across different age-groups and surface area alterations among all disorders in childhood and adulthood were observed. Conclusion Our findings suggest robust but subtle alterations across different age-groups among ADHD, ASD, and OCD. ADHD-specific ICV and hippocampal alterations in children and adolescents, and ASD-specific cortical thickness alterations in the frontal cortex in adults support previous work emphasizing neurodevelopmental alterations in these disorders

    Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis

    Get PDF
    Background Neuroimaging studies have shown structural alterations in several brain regions in children and adults with attention deficit hyperactivity disorder (ADHD). Through the formation of the international ENIGMA ADHD Working Group, we aimed to address weaknesses of previous imaging studies and meta-analyses, namely inadequate sample size and methodological heterogeneity. We aimed to investigate whether there are structural differences in children and adults with ADHD compared with those without this diagnosis. Methods In this cross-sectional mega-analysis, we used the data from the international ENIGMA Working Group collaboration, which in the present analysis was frozen at Feb 8, 2015. Individual sites analysed structural T1-weighted MRI brain scans with harmonised protocols of individuals with ADHD compared with those who do not have this diagnosis. Our primary outcome was to assess case-control differences in subcortical structures and intracranial volume through pooling of all individual data from all cohorts in this collaboration. For this analysis, p values were significant at the false discovery rate corrected threshold of p=0.0156. Findings Our sample comprised 1713 participants with ADHD and 1529 controls from 23 sites with a median age of 14 years (range 4-63 years). The volumes of the accumbens (Cohen's d=-0.15), amygdala (d=-0.19), caudate (d=-0.11), hippocampus (d=-0.11), putamen (d=-0.14), and intracranial volume (d=-0.10) were smaller in individuals with ADHD compared with controls in the mega-analysis. There was no difference in volume size in the pallidum (p=0.95) and thalamus (p=0.39) between people with ADHD and controls. Exploratory lifespan modelling suggested a delay of maturation and a delay of degeneration, as effect sizes were highest in most subgroups of children ( 21 years): in the accumbens (Cohen's d=-0.19 vs -0.10), amygdala (d=-0.18 vs -0.14), caudate (d=-0.13 vs -0.07), hippocampus (d=-0.12 vs -0.06), putamen (d=-0.18 vs -0.08), and intracranial volume (d=-0.14 vs 0.01). There was no difference between children and adults for the pallidum (p=0.79) or thalamus (p=0.89). Case-control differences in adults were non-significant (all p > 0.03). Psychostimulant medication use (all p > 0.15) or symptom scores (all p > 0.02) did not influence results, nor did the presence of comorbid psychiatric disorders (all p > 0.5). Interpretation With the largest dataset to date, we add new knowledge about bilateral amygdala, accumbens, and hippocampus reductions in ADHD. We extend the brain maturation delay theory for ADHD to include subcortical structures and refute medication effects on brain volume suggested by earlier meta-analyses. Lifespan analyses suggest that, in the absence of well powered longitudinal studies, the ENIGMA cross-sectional sample across six decades of ages provides a means to generate hypotheses about lifespan trajectories in brain phenotypes

    Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults : a cross-sectional mega-analysis

    No full text
    BACKGROUND: Neuroimaging studies have shown structural alterations in several brain regions in children and adults with attention deficit hyperactivity disorder (ADHD). Through the formation of the international ENIGMA ADHD Working Group, we aimed to address weaknesses of previous imaging studies and meta-analyses, namely inadequate sample size and methodological heterogeneity. We aimed to investigate whether there are structural differences in children and adults with ADHD compared with those without this diagnosis. METHODS: In this cross-sectional mega-analysis, we used the data from the international ENIGMA Working Group collaboration, which in the present analysis was frozen at Feb 8, 2015. Individual sites analysed structural T1-weighted MRI brain scans with harmonised protocols of individuals with ADHD compared with those who do not have this diagnosis. Our primary outcome was to assess case-control differences in subcortical structures and intracranial volume through pooling of all individual data from all cohorts in this collaboration. For this analysis, p values were significant at the false discovery rate corrected threshold of p=0·0156. FINDINGS: Our sample comprised 1713 participants with ADHD and 1529 controls from 23 sites with a median age of 14 years (range 4-63 years). The volumes of the accumbens (Cohen's d=-0·15), amygdala (d=-0·19), caudate (d=-0·11), hippocampus (d=-0·11), putamen (d=-0·14), and intracranial volume (d=-0·10) were smaller in individuals with ADHD compared with controls in the mega-analysis. There was no difference in volume size in the pallidum (p=0·95) and thalamus (p=0·39) between people with ADHD and controls. Exploratory lifespan modelling suggested a delay of maturation and a delay of degeneration, as effect sizes were highest in most subgroups of children (21 years): in the accumbens (Cohen's d=-0·19 vs -0·10), amygdala (d=-0·18 vs -0·14), caudate (d=-0·13 vs -0·07), hippocampus (d=-0·12 vs -0·06), putamen (d=-0·18 vs -0·08), and intracranial volume (d=-0·14 vs 0·01). There was no difference between children and adults for the pallidum (p=0·79) or thalamus (p=0·89). Case-control differences in adults were non-significant (all p>0·03). Psychostimulant medication use (all p>0·15) or symptom scores (all p>0·02) did not influence results, nor did the presence of comorbid psychiatric disorders (all p>0·5). INTERPRETATION: With the largest dataset to date, we add new knowledge about bilateral amygdala, accumbens, and hippocampus reductions in ADHD. We extend the brain maturation delay theory for ADHD to include subcortical structures and refute medication effects on brain volume suggested by earlier meta-analyses. Lifespan analyses suggest that, in the absence of well powered longitudinal studies, the ENIGMA cross-sectional sample across six decades of ages provides a means to generate hypotheses about lifespan trajectories in brain phenotypes. FUNDING: National Institutes of Health

    Reproducibility in the absence of selective reporting: An illustration from large‐scale brain asymmetry research

    Get PDF
    The problem of poor reproducibility of scientific findings has received much attention over recent years, in a variety of fields including psychology and neuroscience. The problem has been partly attributed to publication bias and unwanted practices such as p-hacking. Low statistical power in individual studies is also understood to be an important factor. In a recent multisite collaborative study, we mapped brain anatomical left-right asymmetries for regional measures of surface area and cortical thickness, in 99 MRI datasets from around the world, for a total of over 17,000 participants. In the present study, we revisited these hemispheric effects from the perspective of reproducibility. Within each dataset, we considered that an effect had been reproduced when it matched the meta-analytic effect from the 98 other datasets, in terms of effect direction and significance threshold. In this sense, the results within each dataset were viewed as coming from separate studies in an "ideal publishing environment," that is, free from selective reporting and p hacking. We found an average reproducibility rate of 63.2% (SD = 22.9%, min = 22.2%, max = 97.0%). As expected, reproducibility was higher for larger effects and in larger datasets. Reproducibility was not obviously related to the age of participants, scanner field strength, FreeSurfer software version, cortical regional measurement reliability, or regional size. These findings constitute an empirical illustration of reproducibility in the absence of publication bias or p hacking, when assessing realistic biological effects in heterogeneous neuroscience data, and given typically-used sample sizes

    Mapping cortical brain asymmetry in 17,141 healthy individuals worldwide via the ENIGMA Consortium

    No full text
    corecore