272 research outputs found
Cell cycle effects of fatty acid derivatives of cytarabine, CP-4055, and of gemcitabine, CP-4126, as basis for the interaction with oxaliplatin and docetaxel
To bypass resistance due to limited entry into the cell derivatives of cytarabine (CP-4055, elacytarabine) and gemcitabine (CP-4126) containing a fatty acid chain at the 5' position of the nucleoside were developed. CP-4055 showed an increased retention of the active metabolite, the triphosphate. This characteristic was supposed to favor combinations, such as with the tubulin antagonist docetaxel, the platinum oxaliplatin and the antifolate pemetrexed. The role of the cell cycle effects of CP-4055 and CP-4126 on the efficacy of the combination with docetaxel or pemetrexed was determined. The combination of CP-4055 with oxaliplatin and docetaxel was also evaluated in a mouse xenograft model. CP-4055 induced a G2/M and S phase accumulation and CP-4126 an S phase accumulation. Both analogs induced a dose-dependent cell kill (apoptosis and necrosis). None of the docetaxel combinations induced a synergistic effect. The combination of docetaxel with CP-4055 or CP-4126 induced a G2/M accumulation in the A549 (lung cancer) cell line, but a G0/G1 accumulation in the WiDR (colon cancer) cell line. Preincubation with docetaxel induced an increased cell kill in both cell lines. The combination with oxaliplatin showed a synergistic effect in both cell lines. Combinations with pemetrexed were antagonistic in both cell lines. In the A549 cell line pemetrexed with CP-4055 led to an increase of the G0/G1 phase and the S phase. In WiDR the combination of pemetrexed with CP-4055 increased the G0/G1 phase and increased the cell kill. Pemetrexed with CP-4126 induced an increase in the G0/G1 phase and the S phase in the A549 cell line. In the xenograft study, on a colon cancer and a lung metastasis model, the combination of CP-4055 with docetaxel showed the best results. Treatment with CP-4055 followed by docetaxel after 4 h resulted in a reduction in metastasis in a lung metastasis model, and a favorable toxicity profile was observed. In conclusion, the combinations with oxaliplatin showed a synergistic effect in the combination studies. Although the combinations with docetaxel did not show an enhanced effect in the in vitro studies, this combination revealed an increased effect in the xenograft model
Quantum Critical Behavior in Disordered Itinerant Ferromagnets: Instability of the Ferromagnetic Phase
An effective field theory is derived that describes the quantum critical
behavior of itinerant ferromagnets as the transition is approached from the
ferromagnetic phase. This complements a recent study of the critical behavior
on the paramagnetic side of the phase transition, and investigates the role of
the ferromagnetic Goldstone modes near criticality. We find that the Goldstone
modes have no direct impact on the critical behavior, and that the critical
exponents are the same as determined by combining results from the paramagnetic
phase with scaling arguments.Comment: 11 pp., revtex4, no fig
Expression profiling of immune inhibitory Siglecs and their ligands in patients with glioma
Item does not contain fulltex
Medicare for all
OBJECTIVES: Interferon (IFN) alpha is a key immunoregulatory cytokine secreted by activated plasmacytoid dendritic cells (PDC) that constitute less than 1% of leucocytes. IFNalpha plays an important role in the pathogenesis of systemic lupus erythematosus (SLE). Nevertheless, the natural IFNalpha inducers in SLE as well as the different IFNalpha secreting cell types are only partially characterised. METHODS: Chromatin was purified from calf thymus. Human peripheral blood mononuclear cells (PBMC), neutrophils and mouse bone marrow neutrophils were purified and cultured with different stimuli. IFNalpha production was estimated by flow cytometry, ELISA and a bioassay, and gene expression by quantitative real time PCR. Neutrophil activation and NETosis were analysed by flow cytometry, ELISA and confocal microscopy. RESULTS: Neutrophils produced a bioactive IFNalpha on stimulation with purified chromatin. IFNalpha secretion was observed with steady state neutrophils purified from 56 independent healthy individuals and autoimmune patients in response to free chromatin and not chromatin containing immune complexes. Chromatin induced IFNalpha secretion occurred independently of Toll-like receptor 9 (TLR9). Neutrophil priming by granulocyte-colony stimulating factor, granulocyte macrophage-colony stimulating factor or IFNalpha was not necessary but PBMC sustained IFNalpha secretion by neutrophils. PDC were 27 times more efficient than neutrophils but blood neutrophils were 100 times more frequent than PDC. Finally, neutrophil activation by chromatin was associated with NETosis and DNA sensor upregulation. CONCLUSIONS: Neutrophils have the capability of producing IFNalpha on selective triggering, and we identified a natural lupus stimulus involved, unveiling a new mechanism involved in SLE. Neutrophils represent another important source of IFNalpha and important targets for future therapies aimed at influencing IFNalpha levels
Antiproliferative activity, mechanism of action and oral antitumor activity of CP-4126, a fatty acid derivative of gemcitabine, in in vitro and in vivo tumor models
Gemcitabine is a deoxycytidine (dCyd) analog with activity in leukemia and solid tumors, which requires phosphorylation by deoxycytidine kinase (dCK). Decreased membrane transport is a mechanism of resistance to gemcitabine. In order to facilitate gemcitabine uptake and prolong retention in the cell, a lipophilic pro-drug was synthesized (CP-4126), with an elaidic fatty acid esterified at the 5'position. CP-4126 was tested in cell lines resistant to cytarabine, another dCyd analog or gemcitabine. Activity of gemcitabine and the derivative was comparable in the parent cell lines, while in dCK deficient cells all compounds were inactive. However, inhibition of nucleoside transport increased the IC(50) for gemcitabine up to 200-fold, but not for CP-4126, underlining the independence of a nucleoside transporter. For in vivo evaluation, nude mice bearing a human xenograft were treated intraperitoneally every third day for five doses at the maximal tolerated dose. In melanoma, sarcoma, lung, prostate, pancreatic and breast cancer xenografts, gemcitabine and CP-4126 were equally and highly effective; in four other xenografts moderately but equally active. In contrast to gemcitabine, CP-4126 could be administered orally, with a schedule and dose dependent toxicity and antitumor activity. In a colon cancer xenograft, antitumor activity of orally administered CP-4126 was equal to the intraperitoneally administered drug. In conclusion, CP-4126 is membrane transporter independent. Intraperitoneally administered CP-4126 was as effective as gemcitabine in several xenografts and CP-4126 is tolerated when orally administered. CP-4126 seems to be a promising new anticancer drug
We’ve Been Down this Road Before: Evidence on the Health Consequences of Precarious Employment in Industrial Societies, 1840-1920
A large body of international scientific research now indicates that the growth of job insecurity, flexible/temporary work and precarious forms of self-employment have had significant negative consequences for occupational health and safety. What is often overlooked in debates over the ‘changing world of work’ is that today’s widespread use insecure and short term work is not new but represents a return to something more resembling labour markets in Australia, Europe and North America in the 19th and early 20th century. As this paper will seek to show, not only were precarious and exploitive working arrangements common during this period but the adverse effects of these on the health, safety and wellbeing was well documented in government inquiries, medical research, press reports and a variety of other sources. Drawing primarily on Australian and British sources, attention here will focus on casual labourers, sweated garment workers, the self-employed and merchant seamen. The paper highlights the valuable role historical research can play in shedding light on contemporary problems and policy debates.The symposium is organised on behalf of AAHANZBS by the Business and Labour History Group, The University of Sydney, with the financial support of the University’s Faculty of Economics and Business
Зміст журналу за 2009 р.
Item does not contain fulltextT-helper 1 and 17 (Th1/Th17) responses are important in inflammatory bowel disease (IBD), and research indicates that Toll-like receptor 6 (TLR6) stimulation leads to Th17 cell development within the lung. The gastrointestinal tract, like the lung, is a mucosal surface that is exposed to bacterially derived TLR6 ligands. Thus, we looked at the effects of TLR6 stimulation on the expression of Th17-, Th1-, and regulatory T-cell-associated transcription factors; RORgammat, T-bet, and Foxp3, respectively; in CD4+ T cells within gut-associated lymphoid tissue (GALT) in vitro and in vivo. Cells from GALT and spleen were stimulated with anti-CD3 and TLR ligands for TLR1/2 and TLR2/6 (Pam3CSK4 and FSL-1, respectively). FSL-1 was more effective than Pam3CSK4 at inducing Th1 and Th17 responses in the GALT while Pam3CSK4 rivaled FSL-1 in the spleen. TLR6 was further explored in vivo using experimental colitis. Tlr6-/- mice were resistant to colitis, and oral FSL-1 led to more severe colitis in wild-type mice. Similar pro-inflammatory reactions were seen in human peripheral blood mononuclear cells, and TLR6 expression was directly correlated with RORC mRNA levels in inflamed intestines of IBD patients. These results demonstrate that TLR6 supports Th1- and Th17-skewed responses in the GALT and might be an important target for the development of new medical interventions in IBD
An altered gp100 peptide ligand with decreased binding by TCR and CD8α dissects T cell cytotoxicity from production of cytokines and activation of NFAT
Altered peptide ligands (APLs) provide useful tools to study T cell activation and potentially direct immune responses to improve treatment of cancer patients. To better understand and exploit APLs, we studied the relationship between APLs and T cell function in more detail. Here, we tested a broad panel of gp100280-288 APLs with respect to T cell cytotoxicity, production of cytokines, and activation of Nuclear Factor of Activated T cells (NFAT) by human T cells gene-engineered with a gp100-HLA-A2-specific TCRαβ. We demonstrated that gp100-specific cytotoxicity, production of cytokines, and activation of NFAT were not affected by APLs with single amino acid substitutions, except for an APL with an amino acid substitution at position 3 (APL A3), which did not elicit any T cell response. A gp100 peptide with a double amino acid mutation (APL S4S6) elicited T cell cytotoxicity and production of IFNγ, and to a lesser extent TNFα, IL-4, and IL-5, but not production of IL-2 and IL-10, or activation of NFAT. Notably, T cell receptor (TCR)-mediated functions showed decreases in sensitivities for S4S6 versus gp100 wild-type (wt) peptide, which were minor for cytotoxicity but at least a 1000-fold more prominent for the production of cytokines. TCR-engineered T cells did not bind A3-HLA-A2, but did bind S4S6-HLA-A2 although to a lowered extent compared to wt peptide-HLA-A2. Moreover, S4S6-induced T cell function demonstrated an enhanced dependency on CD8α. Taken together, most gp100 APLs functioned as agonists, but A3 and S4S6 peptides acted as a null ligand and partial agonist, respectively. Our results further suggest that TCR-mediated cytotoxicity can be dissected from production of cytokines and activation of NFAT, and that the agonist potential of peptide mutants relates to the extent of binding by TCR and CD8α. These findings may facilitate the design of APLs to advance the study of T cell activation and their use for therapeutic applications
DC-SCRIPT is a novel regulator of the tumor suppressor gene CDKN2B and induces cell cycle arrest in ERα-positive breast cancer cells
Breast cancer is one of the most common causes of cancer-related deaths in women. The estrogen receptor (ERα) is well known for having growth promoting effects in breast cancer. Recently, we have identified DC-SCRIPT (ZNF366) as a co-suppressor of ERα and as a strong and independent prognostic marker in ESR1 (ERα gene)-positive breast cancer patients. In this study, we further investigated the molecular mechanism on how DC-SCRIPT inhibits breast cancer cell growth. DC-SCRIPT mRNA levels from 190 primary ESR1-positive breast tumors were related to global gene expression, followed by gene ontology and pathway analysis. The effect of DC-SCRIPT on breast cancer cell growth and cell cycle arrest was investigated using novel DC-SCRIPT-inducible MCF7 breast cancer cell lines. Genome-wide expression profiling of DC-SCRIPT-expressing MCF7 cells was performed to investigate the effect of DC-SCRIPT on cell cycle-related gene expression. Findings were validated by real-time PCR in a cohort of 1,132 ESR1-positive breast cancer patients. In the primary ESR1-positive breast tumors, DC-SCRIPT expression negatively correlated with several cell cycle gene ontologies and pathways. DC-SCRIPT expression strongly reduced breast cancer cell growth in vitro, breast tumor growth in vivo, and induced cell cycle arrest. In addition, in the presence of DC-SCRIPT, multiple cell cycles related genes were differentially expressed including the tumor suppressor gene CDKN2B. Moreover, in 1,132 primary ESR1-positive breast tumors, DC-SCRIPT expression also correlated with CDKN2B expression. Collectively, these data show that DC-SCRIPT acts as a novel regulator of CDKN2B and induces cell cycle arrest in ESR1-positive breast cancer cells
Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017
A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4 (62.3 (55.1�70.8) million) to 6.4 (58.3 (47.6�70.7) million), but is predicted to remain above the World Health Organization�s Global Nutrition Target of <5 in over half of LMICs by 2025. Prevalence of overweight increased from 5.2 (30 (22.8�38.5) million) in 2000 to 6.0 (55.5 (44.8�67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic. © 2020, The Author(s)
- …