15 research outputs found

    Sea Turtles and Survivability in Demersal Trawl Fisheries: Do Comatose Olive Ridley Sea Turtles Survive Post-Release?

    Get PDF
    Incidental capture of air‑breathing species in fishing gear is a major source of mortality for many threatened populations. Even when individuals are discarded alive, they may not survive due to direct injury, or due to more cryptic internal physiological injury such as decompression sickness. Post‑release mortality, however, can be difficult to determine. In this pilot study, we deployed survivorship pop‑up archival tags (sPAT) (n = 3) for an air‑breathing species, the olive ridley sea turtle (Lepidochelys olivacea), one of the first studies to do so. We found that at least two of the three turtles survived after being captured in demersal fish trawl nets and being resuscitated from a comatose state following standard UN Food and Agriculture Organization guidelines. One turtle died; however, the absence of a change in light level but continued diving activity suggested that the turtle was likely predated. Whether capture contributed to the turtle’s susceptibility to predation post‑release is unknown, and average tow duration during this fishing trip was similar in duration to that of a turtle that survived (1.5 h). The two surviving turtles displayed normal horizontal and vertical movements based on previous tagging studies. This study suggests that resuscitation techniques may be effective; however, additional study is necessary to increase sample sizes, and to determine the severity of decompression sickness across different levels of activity and in other fishing gears. This will result in better population mortality estimates, as well as highlight techniques to increase post‑release survivorship

    Guns, germs, and trees determine density and distribution of gorillas and chimpanzees in Western Equatorial Africa

    Get PDF
    We present a range-wide assessment of sympatric western lowland gorillas Gorilla gorilla gorilla and central chimpanzees Pan troglodytes troglodytes using the largest survey data set ever assembled for these taxa: 59 sites in five countries surveyed between 2003 and 2013, totaling 61,000 person-days of fieldwork. We used spatial modeling to investigate major drivers of great ape distribution and population trends. We predicted density across each taxon’s geographic range, allowing us to estimate overall abundance: 361,900 gorillas and 128,700 chimpanzees in Western Equatorial Africa—substantially higher than previous estimates. These two subspecies represent close to 99% of all gorillas and one-third of all chimpanzees. Annual population decline of gorillas was estimated at 2.7%, maintaining them as Critically Endangered on the International Union for Conservation of Nature and Natural Resources (IUCN) Red List. We quantified the threats to each taxon, of which the three greatest were poaching, disease, and habitat degradation. Gorillas and chimpanzees are found at higher densities where forest is intact, wildlife laws are enforced, human influence is low, and disease impacts have been low. Strategic use of the results of these analyses could conserve the majority of gorillas and chimpanzees. With around 80% of both subspecies occurring outside protected areas, their conservation requires reinforcement of anti-poaching efforts both inside and outside protected areas (particularly where habitat quality is high and human impact is low), diligent disease control measures (including training, advocacy, and research into Ebola virus disease), and the preservation of high-quality habitat through integrated land-use planning and implementation of best practices by the extractive and agricultural industries.Additional co-authors: Nicolas Bout, Thomas Breuer, Genevieve Campbell, Pauwel De Wachter, Marc Ella Akou, Fidel Esono Mba, Anna T. C. Feistner, Bernard Fosso, Roger Fotso, David Greer, Clement Inkamba-Nkulu, Calixte F. Iyenguet, Max Kokangoye, Hjalmar S. KĂŒhl, Stephanie Latour, Bola Madzoke, Calixte Makoumbou, Guy-AimĂ© F. Malanda, Richard Malonga, Victor Mbolo, David B. Morgan, Prosper Motsaba, Gabin Moukala, Brice S. Mowawa, Mizuki Murai, Christian Ndzai, Tomoaki Nishihara, Zacharie Nzooh, Lilian Pintea, Amy Pokempner, Hugo J. Rainey, Tim Rayden, Heidi Ruffler, Crickette M. Sanz, Angelique Todd, Hilde Vanleeuwe, Ashley Vosper, Ymke Warren, and David S. Wilki

    Nationwide abundance and distribution of African forest elephants across Gabon using non-invasive SNP genotyping

    Get PDF
    Robust monitoring programs are essential for understanding changes in wildlife population dynamics and distribution over time, especially for species of conservation concern. In this study, we applied a rapid non-invasive sampling approach to the Critically Endangered African forest elephant (Loxodonta cyclotis), at nationwide scale in its principal remaining population strongholds in Gabon. We used a species-specific customized genetic panel and spatial capture-recapture (SCR) approach, which gave a snapshot of current abundance and density distribution of forest elephants across the country. We estimated mean forest elephant density at 0.38 (95% Confidence Interval 0.24–0.52) per km2 from 18 surveyed sites. We confirm that Gabon is the main forest elephant stronghold, both in terms of estimated population size: 95,110 (95% CI 58,872–131,349) and spatial distribution (250,782 km2). Predicted elephant densities were highest in relatively flat areas with a high proportion of suitable habitat not in proximity to the national border. Protected areas and human pressure were not strong predictors of elephant densities in this study. Our nationwide systematic survey of forest elephants of Gabon serves as a proof-of-concept of application of noninvasive genetic sampling for rigorous population monitoring at large spatial scales. To our knowledge, it is the first nationwide DNA-based assessment of a free-ranging large mammal in Africa. Our findings offer a useful national baseline and status update for forest elephants in Gabon. It will inform adaptive management and stewardship of elephants and forests in the most important national forest elephant stronghold in Africa

    Fulfilling global marine commitments; lessons learned from Gabon

    Get PDF
    As part of the Post-2020 Biodiversity Framework, nations are assessing progress over the past decade in addressing the underlying drivers that influence direct pressures on biodiversity and formulating new policies and strategies for the decade to come. For marine conservation, global marine protected area (MPA) coverage is still falling short of the 10% target set in 2010. Here we show that while this reflects a lack of progress in many low- and middle-income countries, a few of these nations have met or exceeded international commitments. To provide an in-depth explanation of how this was achieved in Gabon, we summarize the lessons learnt by our consortium of policy makers and practitioners who helped implement a comprehensive and ecologically representative network of 20 MPAs. We show the importance of creating a national framework, building long-term stakeholder support, and focusing on research that guides implementation and policy; and outline a four-step approach that countries and donors could use as an example to help meet international commitments. By responding to calls to share lessons learned to inform future Convention on Biological Diversity targets, we show how Gabon's experiences could inform change elsewhere.Output Status: Forthcoming/Available Online Additional co-authors: Tim Collins, Philip D. Doherty, Angela Formia, Mark Gately, Micheline Schummer Gnandji, Innocent Ikoubou, Judicael RĂ©gis Kema Kema, Koumba Kombila, Pavlick Etoughe Kongo, Jean Churley Manfoumbi, Sara M. Maxwell, Georges H. Mba Asseko, Catherine M. McClellan, Gianna Minton, Samyra Orianne Ndjimbou, GuylĂšne Nkoane Ndoutoume, Jean Noel Bibang Bi Nguema, Teddy Nkizogho, Jacob Nzegoue, Carmen Karen Kouerey Oliwina, Franck Mbeme Otsagha, Diane Savarit, Stephen K. Pikesley, Philippe du Plessis, Hugo Rainey, Lucienne Ariane Diapoma Kingbell Rockombeny, Howard C. Rosenbaum, Dan Segan, Guy-Philippe Sounguet, Emma J. Stokes, Dominic Tilley, Raul Vilela, Wynand Viljoen, Sam B. Weber, Matthew J. Witt, Brendan J. Godle

    Sea turtles and survivability in demersal trawl fisheries: Do comatose olive ridley sea turtles survive post-release?

    No full text
    Abstract Incidental capture of air-breathing species in fishing gear is a major source of mortality for many threatened populations. Even when individuals are discarded alive, they may not survive due to direct injury, or due to more cryptic internal physiological injury such as decompression sickness. Post-release mortality, however, can be difficult to determine. In this pilot study, we deployed survivorship pop-up archival tags (sPAT) (n = 3) for an air-breathing species, the olive ridley sea turtle (Lepidochelys olivacea), one of the first studies to do so. We found that at least two of the three turtles survived after being captured in demersal fish trawl nets and being resuscitated from a comatose state following standard UN Food and Agriculture Organization guidelines. One turtle died; however, the absence of a change in light level but continued diving activity suggested that the turtle was likely predated. Whether capture contributed to the turtle’s susceptibility to predation post-release is unknown, and average tow duration during this fishing trip was similar in duration to that of a turtle that survived (1.5 h). The two surviving turtles displayed normal horizontal and vertical movements based on previous tagging studies. This study suggests that resuscitation techniques may be effective; however, additional study is necessary to increase sample sizes, and to determine the severity of decompression sickness across different levels of activity and in other fishing gears. This will result in better population mortality estimates, as well as highlight techniques to increase post-release survivorship

    Devastating Decline of Forest Elephants in Central Africa.

    Get PDF
    African forest elephants– taxonomically and functionally unique–are being poached at accelerating rates, but we lack range-wide information on the repercussions. Analysis of the largest survey dataset ever assembled for forest elephants (80 foot-surveys; covering 13,000 km; 91,600 person-days of fieldwork) revealed that population size declined by ca. 62% between 2002–2011, and the taxon lost 30% of its geographical range. The population is now less than 10% of its potential size, occupying less than 25% of its potential range. High human population density, hunting intensity, absence of law enforcement, poor governance, and proximity to expanding infrastructure are the strongest predictors of decline. To save the remaining African forest elephants, illegal poaching for ivory and encroachment into core elephant habitat must be stopped. In addition, the international demand for ivory, which fuels illegal trade, must be dramatically reduced

    Conservation‐relevant reproductive parameters from long‐term tagging of two globally important sea turtle nesting aggregations in Central Africa

    No full text
    Assessing abundance and monitoring ecology and population trends are of critical importance for animal species of conservation concern. For sea turtles, annual nest counts represent the most common method of estimating population size. However, to develop a better understanding of population trends, these data need to be complemented by other reproductive parameters, which are lacking for many nesting populations across central Africa.To this end, an intensive capture-mark-recapture programme was conducted spanning 21 years (1997-2018) in the most important nesting sites on the Atlantic coast of central Africa (Gabon and Congo) for leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) sea turtles.A total of 18,105 encounters of 14,109 D. coriacea individuals and 2678 encounters of 2427 L. olivacea individuals were recorded. Biological and technical parameters such as clutch frequency, inter-nesting interval, remigration interval, annual survival rate, somatic growth, size trends, tag loss and number of annual nesting females were estimated through a variety of methods and models.The study detected a decline in body size and low survival probability (not due to tag loss) in both species but no clear decline in estimated annual number of nesting females. High fidelity to nesting sites (<30 km for both species) implies that the current conservation strategy, protecting the main nesting areas, could be effective.We recommend that local conservation managers promote: (i) continued monitoring of the nesting activity of the two species through capture-mark-recapture programmes; (ii) continued nest counts at long-term monitoring sites, which may also detect possible spatial shifts; and (iii) strengthening of cross-border cooperation between Gabon and Republic of the Congo given the observed connectivity between nesting sites of the two countries

    A first estimate of sea turtle bycatch in the industrial trawling fishery of Gabon

    No full text
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Gabon hosts nesting grounds for several sea turtle species, including the world’s largest rookery for the leatherback turtle (Dermochelys coriacea), Africa’s largest rookery for the olive ridley turtle (Lepidochelys olivacea) and smaller aggregations of the hawksbill turtle (Eretmochelys imbricata) and green turtle (Chelonia mydas). To assess the level of incidental captures of turtles by the Gabonese trawl fishery, an onboard observer program was conducted in the period 2012–2013. A total of 143 turtles were captured by 15 trawlers during 271 fishing days. The olive ridley turtle was the main species captured (80% of bycaught turtles), with mostly adult-sized individuals. The remaining 20% included green turtles, hawksbill turtles, leatherback turtles and undetermined species. Bycatch per unit of effort (BPUE) of olive ridley turtles varied greatly depending on the period of the year (range of means: 0.261–2.270). Dead and comatose turtles were 6.2 and 24.6% respectively (n = 65). By applying the available fishing effort to two BPUE scenarios (excluding or considering a seasonal peak), the total annual number of captures was estimated as ranging between 1026 (CI 95% 746–1343) and 2581 (CI 95% 1641–3788) olive ridley turtles, with a mortality ranging from 63 (CI 95% 13–135) to 794 (CI 95% 415–1282) turtles per year depending on the scenario and on the fate of comatose turtles. Such a potential mortality may be reason for concern for the local breeding population of olive ridley turtles and recommendations in terms of possible conservation measures and further research are given.Funding for the observer program and training was provided by the Government of Gabon, the Marine Turtle Conservation Fund (Fish and Wildlife Service, US Department of the Interior), NOAA (US Department of Commerce, Division of International Affairs), UK Darwin Initiative (Department for Environment Food and Rural Affairs), and the World Wide Fund for Nature

    Fulfilling global marine commitments; lessons learned from Gabon

    No full text
    As part of the Post-2020 Biodiversity Framework, nations are assessing progress over the past decade in addressing the underlying drivers that influence direct pressures on biodiversity and formulating new policies and strategies for the decade to come. For marine conservation, global marine protected area (MPA) coverage is still falling short of the 10% target set in 2010. Here we show that while this reflects a lack of progress in many low- and middle-income countries, a few of these nations have met or exceeded international commitments. To provide an in-depth explanation of how this was achieved in Gabon, we summarize the lessons learnt by our consortium of policy makers and practitioners who helped implement a comprehensive and ecologically representative network of 20 MPAs. We show the importance of creating a national framework, building long-term stakeholder support, and focusing on research that guides implementation and policy; and outline a four-step approach that countries and donors could use as an example to help meet international commitments. By responding to calls to share lessons learned to inform future Convention on Biological Diversity targets, we show how Gabon's experiences could inform change elsewhere
    corecore