33 research outputs found
Michigan Orbital DEbris Survey Telescope Observations of the Geosynchronous Orbital Debris Environment. Observing Years: 2007-2009
NASA uses the Michigan Orbital DEbris Survey Telescope (MODEST), the University of Michigan's 0.61-m aperture Curtis-Schmidt telescope at the Cerro Tololo Inter-American Observatory in Chile, to help characterize the debris environment in geosynchronous orbit; this began in February 2001 and continues to the present day. Detected objects that are found to be on the U.S. Space Surveillance Network cataloged objects list are termed correlated targets (CTs), while those not found on the list are called uncorrelated targets (UCTs). This Johnson Space Center report provides details of observational and data-reduction processes for the entire MODEST dataset acquired in calendar years (CYs) 2007, 2008, and 2009. Specifically, this report describes the collection and analysis of 36 nights of data collected in CY 2007, 43 nights of data collected in CY 2008, and 43 nights of data collected in CY 2009. MODEST is equipped with a 2048 x 2048-pixel charged coupled device camera with a 1.3 by 1.3 deg field of view. This system is capable of detecting objects fainter than 18th magnitude (R filter) using a 5-s integration. This corresponds to a 20-cm diameter, 0.175-albedo object at 36,000 km altitude assuming a diffuse Lambertian phase function. The average number of detections each night over all 3 years was 26. The percentage of this number that represented the UCT population ranged from 34% to 18%, depending on the observing strategy and the field center location. Due to the short orbital arc over which observations are made, the eccentricity of the object s orbit is extremely difficult to measure accurately. Therefore, a circular orbit was assumed when calculating the orbital elements. A comparison of the measured inclination (INC), right ascension of ascending node (RAAN), and mean motion to the quantities for CTs from the U.S. Space Surveillance Network shows acceptable errors. This analysis lends credibility to the determination of the UCT orbital distributions. Figure 1 shows the size distribution of 3,143 objects detected in the data processed for CYs 2007, 2008, and 2009. The actual peak of the absolute magnitude distribution for the functional correlated targets is 10th magnitude, whereas the peak was 11th magnitude in 2002 2003 and 10th magnitude for 2004-2006. An absolute magnitude of 10.5 corresponds to objects with average diameters of 6.3 m, assuming an albedo of 0.175 and a diffuse Lambertian phase function. This result generally agrees with the known sizes of intact satellites. The absolute magnitude distribution for the UCTs is broad, but starts to roll off near 25 cm diameter or 17.5 magnitude. This roll off in the distribution reflects the detection capability of MODEST, not the true nature of the population. The true population is believed to continue at the same slope through fainter magnitudes based on comparisons with the LEO break-up law
Calculating Statistical Orbit Distributions Using GEO Optical Observations with the Michigan Orbital Debris Survey Telescope (MODEST)
NASA's Orbital Debris measurements program has a goal to characterize the small debris environment in the geosynchronous Earth-orbit (GEO) region using optical telescopes ("small" refers to objects too small to catalog and track with current systems). Traditionally, observations of GEO and near-GEO objects involve following the object with the telescope long enough to obtain an orbit suitable for tracking purposes. Telescopes operating in survey mode, however, randomly observe objects that pass through their field of view. Typically, these short-arc observation are inadequate to obtain detailed orbits, but can be used to estimate approximate circular orbit elements (semimajor axis, inclination, and ascending node). From this information, it should be possible to make statistical inferences about the orbital distributions of the GEO population bright enough to be observed by the system. The Michigan Orbital Debris Survey Telescope (MODEST) has been making such statistical surveys of the GEO region for four years. During that time, the telescope has made enough observations in enough areas of the GEO belt to have had nearly complete coverage. That means that almost all objects in all possible orbits in the GEO and near- GEO region had a non-zero chance of being observed. Some regions (such as those near zero inclination) have had good coverage, while others are poorly covered. Nevertheless, it is possible to remove these statistical biases and reconstruct the orbit populations within the limits of sampling error. In this paper, these statistical techniques and assumptions are described, and the techniques are applied to the current MODEST data set to arrive at our best estimate of the GEO orbit population distribution
Comparison of Orbital Parameters for GEO Debris Predicted by LEGEND and Observed by MODEST: Can Sources of Orbital Debris be Identified?
Since 2002 the National Aeronautics and Space Administration (NASA) has carried out an optical survey of the debris environment in the geosynchronous Earth-orbit (GEO) region with the Michigan Orbital Debris Survey Telescope (MODEST) in Chile. The survey coverage has been similar for 4 of the 5 years allowing us to follow the orbital evolution of Correlated Targets (CTs), both controlled and un-controlled objects, and Un-Correlated Targets (UCTs). Under gravitational perturbations the distributions of uncontrolled objects, both CTs and UCTs, in GEO orbits will evolve in predictable patterns, particularly evident in the inclination and right ascension of the ascending node (RAAN) distributions. There are several clusters (others have used a "cloud" nomenclature) in observed distributions that show evolution from year to year in their inclination and ascending node elements. However, when MODEST is in survey mode (field-of-view approx.1.3deg) it provides only short 5-8 minute orbital arcs which can only be fit under the assumption of a circular orbit approximation (ACO) to determine the orbital parameters. These ACO elements are useful only in a statistical sense as dedicated observing runs would be required to obtain sufficient orbital coverage to determine a set of accurate orbital elements and then to follow their evolution. Identification of the source(s) for these "clusters of UCTs" would be advantageous to the overall definition of the GEO orbital debris environment. This paper will set out to determine if the ACO elements can be used to in a statistical sense to identify the source of the "clustering of UCTs" roughly centered on an inclination of 12deg and a RAAN of 345deg. The breakup of the Titan 3C-4 transtage on February 21, 1992 has been modeled using NASA s LEGEND (LEO-to-GEO Environment Debris) code to generate a GEO debris cloud. Breakup fragments are created based on the NASA Standard Breakup Model (including fragment size, area-to-mass (A/M), and delta-V distributions). Once fragments are created, they are propagated forward in time with a subroutine GEOPROP. Perturbations included in GEOPROP are those due to solar/lunar gravity, radiation pressure, and major geopotential terms. The question to be addressed: are the UCTs detected by MODEST in this inclination/RAAN region related to the Titan 3C-4 breakup? Discussion will include the observational biases in attempting to detect a specific, uncontrolled target during given observing session. These restrictions include: (1) the length of the observing session which is 8 hours or less at any given date or declination; (2) the assumption of ACO elements for detected object when the breakup model predicts debris with non-zero eccentricities; (3) the size and illumination or brightness of the debris predicted by the model and the telescope/sky limiting magnitude
Preliminary Characterization of IDCSP Spacecrafts Through a Multi-Analytical Approach
Defining the risks present to both crewed and robotic spacecrafts is part of NASA s mission, and is critical to keep these resources out of harm s way. Characterizing orbital debris is an essential part of this mission. We present a proof-of-concept study that employs multiple techniques to demonstrate the efficacy of each approach. The targets of this study are IDCSPs (Initial Defense Communications Satellite Program). 35 of these satellites were launched by the US in the mid-1960s and were the first US military communications satellites in the GEO regime. They were emplaced in slightly sub-synchronous orbits. These targets were chosen for this proof-of-concept study for the simplicity of their observable exterior surfaces. The satellites are 26-sided polygons (86cm in diameter), initially spin-stabilized, and covered on all sides in solar panels. Data presented here include: (a) visible broadband photometry (Johnson/Kron-Cousins BVRI) taken with the 0.9m SMARTs telescope (Small and Medium Aperture Telescopes) at the Cerro Tololo Inter-American Observatory (CTIO) in Chile in April, 2012, (b) laboratory broadband photometry (Johnson/ Bessell BVRI) of solar cells, obtained using the Optical Measurements Center (OMC) at NASA/JSC [1], (c) visible-band spectra taken using the Magellan 6.5m Baade Telescope at Las Campanas Observatory in Chile in May, 2012 [2], and (d) visible-band laboratory spectra of solar cells using an ASD Field Spectrometer. Color-color plots using broadband photometry (e.g. B-R vs. B-V) demonstrate that different material types fall into distinct areas on the plots [1]. Spectra of the same material types as those plotted in the color-color plots each display their own signature as well. Here, we compare lab data with telescopic data, and photometric results with spectroscopic results. The spectral response of solar cells in the visible wavelength regime varies from relatively flat to somewhat older solar cells whose reflectivity can be gently or sharply peaked in the blue. With a target like IDCSPs, the material type is known a priori, aiding in understanding how material type affects one s observations
Detection of Optically Faint GEO Debris
There have been extensive optical surveys for debris at geosynchronous orbit (GEO) conducted with meter-class telescopes, such as those conducted with MODEST (the Michigan Orbital DEbris Survey Telescope, a 0.6-m telescope located at Cerro Tololo in Chile), and the European Space Agency's 1.0-m space debris telescope (SDT) in the Canary Islands. These surveys have detection limits in the range of 18th or 19th magnitude, which corresponds to sizes larger than 10 cm assuming an albedo of 0.175. All of these surveys reveal a substantial population of objects fainter than R = 15th magnitude that are not in the public U.S. Satellite Catalog. To detect objects fainter than 20th magnitude (and presumably smaller than 10 cm) in the visible requires a larger telescope and excellent imaging conditions. This combination is available in Chile. NASA's Orbital Debris Program Office has begun collecting orbital debris observations with the 6.5-m (21.3-ft diameter) "Walter Baade" Magellan telescope at Las Campanas Observatory. The goal is to detect objects as faint as possible from a ground-based observatory and begin to understand the brightness distribution of GEO debris fainter than R = 20th magnitude
Characterizing Orbital Debris and Spacecrafts Through a Multi-Analytical Approach
Defining the risks present to both crewed and robotic spacecrafts is part of NASA s mission, and is critical to keep these resources out of harms way. Characterizing orbital debris is an essential part of this mission. We present a proof-of-concept study that employs multiple techniques to demonstrate the efficacy of each approach. The targets of this study are IDCSPs (Initial Defense Communications Satellite Program). 35 of these satellites were launched by the US in the mid-1960s and were the first US communications satellites in the GEO regime. They were emplaced in slightly sub-synchronous orbits. These targets were chosen for this proof-of-concept study for the simplicity of their observable exterior surfaces. The satellites are 26-sided polygons (86cm in diameter), initially spin-stabilized and covered on all sides in solar panels. Data presented here include: (a) visible broadband photometry (Johnson B and Cousins R bands) taken with the University of Michigan s 0.6-m aperture Curtis-Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope) in Chile in November, 2011, (b) laboratory broadband photometry (Johnson BV Cousins RI) of solar cells, obtained using the Optical Measurements Center (OMC) at NASA/JSC (see Cowardin et al., this meeting for more details), (c) visible-band spectra taken using the Magellan 6.5m Baade Telescope at Las Campanas Observatory in Chile in March, 2012 (see also Seitzer et al., this meeting), and (d) visible-band laboratory spectra of solar cells using a Field Spectrometer. Color-color plots using broadband photometry (e.g. B-R vs. R-I) demonstrate that different material types fall into distinct areas on the plots (Cowardin, AMOS 2010). Spectra will be binned in wavelength to compare with photometry results and plotted on the same graph for comparison. This allows us to compare lab data with telescopic data, and photometric results with spectroscopic results. In addition, the spectral response of solar cells in the visible wavelength regime varies from relatively flat (modern black solar cells with uniform albedo as a function of wavelength) to older solar cells whose reflectivity is sharply peaked in the blue (similar to the IDCSP solar cells). With a target like IDCSPs, the material type is known a priori. Therefore, this study will also be used to determine whether laboratory spectra of pre-launch (pristine) solar cells differ from the telescopic spectra of IDCSPs that have been exposed to the harsh environment of space for ~45 years to investigate whether space weathering effects are evident
An Attempt to Observe Debris from the Breakup of a Titan 3C-4 Transtage
In February 2007 dedicated observations were made of the orbital space predicted to contain debris from the breakup of the Titan 3C-4 transtage back on February 21, 1992. These observations were carried out on the Michigan Orbital DEbris Survey Telescope (MODEST) in Chile with its 1.3deg field of view. The search region or orbital space (inclination and right ascension of the ascending node (RAAN) was predicted using NASA#s LEGEND (LEO-to-GEO Environment Debris) code to generate a Titan debris cloud. Breakup fragments are created based on the NASA Standard Breakup Model (including fragment size, area-to-mass (A/M), and delta-V distributions). Once fragments are created, they are propagated forward in time with a subroutine GEOPROP. Perturbations included in GEOPROP are those due to solar/lunar gravity, radiation pressure, and major geopotential terms. Barker, et. al, (AMOS Conference Proceedings, 2006, pp. 596-604) used similar LEGEND predictions to correlate survey observations made by MODEST (February 2002) and found several possible night-to-night correlations in the limited survey dataset. One conc lusion of the survey search was to dedicate a MODEST run to observing a GEO region predicted to contain debris fragments and actual Titan debris objects (SSN 25000, 25001 and 30000). Such a dedicated run was undertaken with MODEST between February 17 and 23, 2007 (UT dates). MODEST#s limiting magnitude of 18.0 (S\N approx.10) corresponds to a size of 22cm assuming a diffuse Lambertian albedo of 0.2. However, based on observed break-up data, we expect most debris fragments to be smaller than 22cm which implies a need to increase the effective sensitivity of MODEST for smaller objects. MODEST#s limiting size can be lowered by increasing the exposure time (20 instead of 5 seconds) and applying special image processing. The special processing combines individual CCD images to detect faint objects that are invisible on a single CCD image. Sub-images are cropped from six consecutive CCD images with pixel shifts between images being consistent with the predicted movement of a Titan object. A median image of all the sub-images is then created leaving only those objects with the proper Titan motion. Limiting the median image in this manner brings the needed computer time to process all images taken on one night down to about 50 hours of CPU time
Scientific Hybrid Realtiy Environments (SHyRE): Bringing Field Work into the Laboratory
The use of analog environments in preparing for future planetary surface exploration is key in ensuring we both understand the processes shaping other planetary surfaces as well as develop the technology, systems, and concepts of operations necessary to operate in these geologic environments. While conducting fieldwork and testing technology in relevant terrestrial field environments is crucial in this development, it is often the case that operational testing requires a time-intensive iterative process that is hampered by the rigorous conditions (e.g. terrain, weather, location, etc.) found in most field environments. Additionally, field deployments can be costly and must be scheduled months in advance, therefore limiting the testing opportunities required to investigate and compare science operational concepts to only once or twice per year
Cervical lymph node metastasis in adenoid cystic carcinoma of the larynx: a collective international review
Adenoid cystic carcinoma (AdCC) of the head and neck is a well-recognized pathologic entity that rarely occurs in the larynx. Although the 5-year locoregional control rates are high, distant metastasis has a tendency to appear more than 5 years post treatment. Because AdCC of the larynx is uncommon, it is difficult to standardize a treatment protocol. One of the controversial points is the decision whether or not to perform an elective neck dissection on these patients. Because there is contradictory information about this issue, we have critically reviewed the literature from 1912 to 2015 on all reported cases of AdCC of the larynx in order to clarify this issue. During the most recent period of our review (1991-2015) with a more exact diagnosis of the tumor histology, 142 cases were observed of AdCC of the larynx, of which 91 patients had data pertaining to lymph node status. Eleven of the 91 patients (12.1%) had nodal metastasis and, based on this low proportion of patients, routine elective neck dissection is therefore not recommended
Compensation of Atmospheric Differential Color Refraction Bias in Ground-Based Optical Astrometric Observations of Satellites with Concurrent Spectroscopic Measurements
Ground-based telescopes provide the majority of observations used to track geostationary satellites and orbital debris. Many sensors specifically designed for Space Situational Awareness (SSA) operate over almost the entire 300--1100 nm sensitivity band of silicon. Earth's atmosphere is optically dispersive and observations made from the ground with wide passbands are subject to a systematic angle bias from differential color refraction (DCR). DCR bias affects both fiducial stars used to compute astrometric solutions for SSA images and the satellites being observed, and is on the order of 100 mas below 60 degrees elevation. With the release of the Gaia DR2 catalog, stellar DCR may be predicted to an accuracy of better than 20 mas above 20 degrees elevation but compensation of SSA target DCR requires per-target spectroscopic measurements. We have constructed a slitless spectrograph with COTS equipment and have used it to measure the silicon passband spectra of GPS and GLONASS satellites under a diversity of atmospheric and illumination conditions. The instrument multiplexes between two transmission gratings and suitable colored glass blocking filters to collect a full spectrum every 105 seconds on targets brighter than 12.5 magnitude. These spectra were used to infer a DCR bias for the target for that time period. Simultaneously, a separate telescope collected high frame-rate bare silicon images of the same targets. The images were processed into observations with color-aware astrometric reductions using the Gaia DR2 star catalog. The bare-silicon astrometry was compared with the final orbit solutions published by the International GNSS Service and the inferred DCR bias was compared against those observation residuals. 312 unique spectroscopic measurements on 14 distinct satellites were collected between 20 and 60 degrees elevation over seven nights from September 2018 to April 2019. Using these measurements, we demonstrate a 60\% reduction in bias and 30\% reduction in noise in the vertical component of astrometric residuals, relative to color-agnostic processing