78 research outputs found

    Formulating layered adjustable autonomy for unmanned aerial vehicles

    Get PDF
    Purpose - In this paper, we propose a Layered Adjustable Autonomy (LAA) as a dynamically adjustable autonomy model for a multi-agent system. It is mainly used to efficiently manage humans and agents share control of autonomous systems and maintain humans’ global control over the agents. Design/Methodology/Approach - We apply the LAA model in an agent-based autonomous Unmanned Arial Vehicle (UAV) system. The UAV system implementation consists of two parts, software, and hardware. The software part represents the controller and the cognitive and the hardware represents the computing machinery and the actuator of the UAV system. The UAV system performs three experimental scenarios of dance, surveillance and search missions. The selected scenarios demonstrate different behaviors in order to create a suitable test plan and ensure significant results. Findings - The results of the UAV system tests prove that segregating the autonomy of a system as multidimensional and adjustable layers enables humans and/or agents to perform actions in a convenient autonomy levels. Hence, reducing the adjustable autonomy drawbacks of constraining the autonomy of the agents, increasing humans’ workload and exposing the system to disturbances. Originality/value - The application of the LAA model in a UAV manifests the significance of implementing dynamic adjustable autonomy. Assessing the autonomy within three phases of agents run cycle (task-selection, actions-selection, actions-execution) is an original idea that aims to direct agents’ autonomy towards performance competency. The agents’ abilities are well exploited when an incompetent agent switches with a more competent on

    Utilization of waste as a constituent ingredient for enhancing thermal performance of bricks – a review paper

    Get PDF
    In view of the environmental regulations, practitioners have been inclined to use bricks with higher insulation capability, however with minimal attention to sustainable material composition, let alone waste material. From a research perspective, in the wake of the growing concerns for the environment, the use of waste material to develop bricks which can exhibit suitable characteristics attributed to the material composition has been on the rise. However, the extant literature on utilization of waste materials for brick mix design has neglected to provide detailed literature review on the influence of waste materials on the thermal performance of bricks. Methods: This paper provides detailed review of research conducted on thermal properties of bricks produced from various types of waste. Influence of the method of manufacturing and type of waste on thermal performance of bricks is discussed. A sustainability selection criteria format is provided to assist optimal decision making in considering alternative sustainable waste material. Findings: A sustainability selection criteria format is provided to assist optimal decision making in considering alternative sustainable waste material. Applications: The outcome of this paper can serve as a common reference for practitioners and researchers attempting to seek out solutions for further improving overall quality of thermally insulated waste-incorporated bricks, paving the way for more focused research on waste utilization in the development of more sustainable wall material based on the current brick production process

    An innovative decision-making framework for supplier selection based on a hybrid interval-valued neutrosophic soft expert set

    Get PDF
    The best way to achieve sustainable construction is to choose materials with a smaller environmental impact. In this regard, specialists and architects are advised to take these factors into account from the very beginning of the design process. This study offers a framework for selecting the optimal sustainable building material. The core goal of this article is to depict a novel structure of a neutrosophic soft expert set hybrid called an interval-valued neutrosophic soft expert set for utilization in construction supply chain management to select a suitable supplier for a construction project. This study applies two different techniques. One is an algorithmic technique, and the other is set-theoretic. The first one is applied for the structural characterization of an interval-valued neutrosophic expert set with its necessary operators like union and OR operations. The second one is applied for the construction of a decision-making system with the help of pre-described operators. The main purpose of the algorithm is to be used in supply chain management to select a suitable supplier for construction. This paper proposes a new model based on interval-valued, soft expert and neutrosophic settings. In addition to considering these settings jointly, this model is more flexible and reliable than existing ones because it overcomes the obstacles of existing studies on neutrosophic soft set-like models by considering interval-valued conditions, soft expert settings and neutrosophic settings. In addition, an example is presented to demonstrate how the decision support system would be implemented in practice. In the end, analysis, along with benefits, comparisons among existing studies and flexibility, show the efficacy of the proposed structure

    Mapping and Deep Analysis of Image Dehazing: Coherent Taxonomy, Datasets, Open Challenges, Motivations, and Recommendations

    Get PDF
    Our study aims to review and analyze the most relevant studies in the image dehazing field. Many aspects have been deemed necessary to provide a broad understanding of various studies that have been examined through surveying the existing literature. These aspects are as follows: datasets that have been used in the literature, challenges that other researchers have faced, motivations, and recommendations for diminishing the obstacles in the reported literature. A systematic protocol is employed to search all relevant articles on image dehazing, with variations in keywords, in addition to searching for evaluation and benchmark studies. The search process is established on three online databases, namely, IEEE Xplore, Web of Science (WOS), and ScienceDirect (SD), from 2008 to 2021. These indices are selected because they are sufficient in terms of coverage. Along with definition of the inclusion and exclusion criteria, we include 152 articles to the final set. A total of 55 out of 152 articles focused on various studies that conducted image dehazing, and 13 out 152 studies covered most of the review papers based on scenarios and general overviews. Finally, most of the included articles centered on the development of image dehazing algorithms based on real-time scenario (84/152) articles. Image dehazing removes unwanted visual effects and is often considered an image enhancement technique, which requires a fully automated algorithm to work under real-time outdoor applications, a reliable evaluation method, and datasets based on different weather conditions. Many relevant studies have been conducted to meet these critical requirements. We conducted objective image quality assessment experimental comparison of various image dehazing algorithms. In conclusions unlike other review papers, our study distinctly reflects different observations on image dehazing areas. We believe that the result of this study can serve as a useful guideline for practitioners who are looking for a comprehensive view on image dehazing

    An optimized beuro-bee algorithm approach to predict the FRP-concrete bond strength of RC beams

    Get PDF
    Over the world, there is growing worry about the corrosion of reinforced concrete structures. Structure repair, rehabilitation, replacement, and new structures all require cost-effective and long-lasting technologies. Fiber Reinforced Polymer (FRP) has been widely employed in both retrofitting existing structures and building new ones. Due to its varied qualities in reinforced concrete and masonry constructions as a repair composite material, FRP have seen a rise in use over the last decade. This material have several advantages such as high stiffness-to-weight and strength-to-weight ratios, light weight, possibly high longevity, and relative ease of usage in the field. Among all the parameters the bond between concrete and FRP composite play an important role in the strengthening of structures. However, the bond behaviour of the FRP-concrete interface is complex, with several failure modes, making the bond strength difficult to forecast, resulting in the FRP strengthened concrete structure. To overcome such kind of issues machine learning models are sufficient to forecast the bond strength of FRP-concrete. In this article Artificial Neural Network (ANN), optimized Artificial Bee Colony (ABC)-ANN and Gaussian Process Regression (GPR) algorithms are deployed to predict the bond strength. The R-value of ABC-ANN and GPR models are 0.9514 and 0.9618 respectively. This research aids researchers in estimating bond strength in less time, at a lower cost, and with less experimental work.Web of Science103806379

    Adaptive Deep Learning Detection Model for Multi-Foggy Images

    Get PDF
    The fog has different features and effects within every single environment. Detection whether there is fog in the image is considered a challenge and giving the type of fog has a substantial enlightening effect on image defogging. Foggy scenes have different types such as scenes based on fog density level and scenes based on fog type. Machine learning techniques have a significant contribution to the detection of foggy scenes. However, most of the existing detection models are based on traditional machine learning models, and only a few studies have adopted deep learning models. Furthermore, most of the existing machines learning detection models are based on fog density-level scenes. However, to the best of our knowledge, there is no such detection model based on multi-fog type scenes have presented yet. Therefore, the main goal of our study is to propose an adaptive deep learning model for the detection of multi-fog types of images. Moreover, due to the lack of a publicly available dataset for inhomogeneous, homogenous, dark, and sky foggy scenes, a dataset for multi-fog scenes is presented in this study (https://github.com/Karrar-H-Abdulkareem/Multi-Fog-Dataset). Experiments were conducted in three stages. First, the data collection phase is based on eight resources to obtain the multi-fog scene dataset. Second, a classification experiment is conducted based on the ResNet-50 deep learning model to obtain detection results. Third, evaluation phase where the performance of the ResNet-50 detection model has been compared against three different models. Experimental results show that the proposed model has presented a stable classification performance for different foggy images with a 96% score for each of Classification Accuracy Rate (CAR), Recall, Precision, F1-Score which has specific theoretical and practical significance. Our proposed model is suitable as a pre-processing step and might be considered in different real-time applications

    Implementing an efficient expert system for services center management by fuzzy logic controller

    Get PDF
    Expert System (ES) is considered to be the prominent reasoning practices which are commonly employed towards various application domains. Considering expert systems, human understanding regarding specific proficiency in accomplishing specific tasks could be signified as facts and rules towards their knowledge base, which finds and employs the data delivered by means of a manipulator. Reasoning procedure has been further employed towards the specified expertise by means of heuristic methods for formulating the elucidation. Mechanisms which employ knowledge based approaches are considered to be more candid when compared to other conservative approaches. Knowledge could be signified clearly towards knowledge base, thereby capable in alteration with comparative easiness, which commonly employs the concept of rules. Inference engines employ knowledge base subjects for solving specific problems based on user responses by means of interface (for instance, specify the situations needed for car assessment). This inference unit deeds with knowledge for applying this knowledge for specific problems. There are numerous approaches for control systems that are applied in all the major areas in industry. In all these approaches for controlling the systems, fuzzy has been deemed to be the best methodology, mainly because of its increased speed and cost-efficiency. For machine regulation, fuzzy logic is found to be vividly employed. This paper mainly focuses in designing the simulation model for fuzzy logic regulator in advising the supervisor of service center in maintaining definite delay in service towards acceptable limit

    A novel low-latency and energy-efficient task scheduling framework for Internet of Medical Things in an edge fog cloud system

    Get PDF
    In healthcare, there are rapid emergency response systems that necessitate real-time actions where speed and efficiency are critical; this may suffer as a result of cloud latency because of the delay caused by the cloud. Therefore, fog computing is utilized in real-time healthcare applications. There are still limitations in response time, latency, and energy consumption. Thus, a proper fog computing architecture and good task scheduling algorithms should be developed to minimize these limitations. In this study, an Energy-Efficient Internet of Medical Things to Fog Interoperability of Task Scheduling (EEIoMT) framework is proposed. This framework schedules tasks in an efficient way by ensuring that critical tasks are executed in the shortest possible time within their deadline while balancing energy consumption when processing other tasks. In our architecture, Electrocardiogram (ECG) sensors are used to monitor heart health at home in a smart city. ECG sensors send the sensed data continuously to the ESP32 microcontroller through Bluetooth (BLE) for analysis. ESP32 is also linked to the fog scheduler via Wi-Fi to send the results data of the analysis (tasks). The appropriate fog node is carefully selected to execute the task by giving each node a special weight, which is formulated on the basis of the expected amount of energy consumed and latency in executing this task and choosing the node with the lowest weight. Simulations were performed in iFogSim2. The simulation outcomes show that the suggested framework has a superior performance in reducing the usage of energy, latency, and network utilization when weighed against CHTM, LBS, and FNPA models.Web of Science2214art. no. 532

    The use of computational geometry techniques to resolve the issues of coverage and connectivity in wireless sensor networks

    Get PDF
    Wireless Sensor Networks (WSNs) enhance the ability to sense and control the physical environment in various applications. The functionality of WSNs depends on various aspects like the localization of nodes, the strategies of node deployment, and a lifetime of nodes and routing techniques, etc. Coverage is an essential part of WSNs wherein the targeted area is covered by at least one node. Computational Geometry (CG) -based techniques significantly improve the coverage and connectivity of WSNs. This paper is a step towards employing some of the popular techniques in WSNs in a productive manner. Furthermore, this paper attempts to survey the existing research conducted using Computational Geometry-based methods in WSNs. In order to address coverage and connectivity issues in WSNs, the use of the Voronoi Diagram, Delaunay Triangulation, Voronoi Tessellation, and the Convex Hull have played a prominent role. Finally, the paper concludes by discussing various research challenges and proposed solutions using Computational Geometry-based techniques.Web of Science2218art. no. 700
    corecore