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ABSTRACT Over the world, there is growing worry about the corrosion of reinforced concrete structures.
Structure repair, rehabilitation, replacement, and new structures all require cost-effective and long-lasting
technologies. Fiber Reinforced Polymer (FRP) has been widely employed in both retrofitting existing
structures and building new ones. Due to its varied qualities in reinforced concrete andmasonry constructions
as a repair composite material, FRP have seen a rise in use over the last decade. This material have
several advantages such as high stiffness-to-weight and strength-to-weight ratios, light weight, possibly high
longevity, and relative ease of usage in the field. Among all the parameters the bond between concrete and
FRP composite play an important role in the strengthening of structures. However, the bond behaviour of the
FRP-concrete interface is complex, with several failure modes, making the bond strength difficult to forecast,
resulting in the FRP strengthened concrete structure. To overcome such kind of issues machine learning
models are sufficient to forecast the bond strength of FRP-concrete. In this article Artificial Neural Network
(ANN), optimized Artificial Bee Colony (ABC)-ANN and Gaussian Process Regression (GPR) algorithms
are deployed to predict the bond strength. The R-value of ABC-ANN and GPR models are 0.9514 and
0.9618 respectively. This research aids researchers in estimating bond strength in less time, at a lower cost,
and with less experimental work.

INDEX TERMS ABC-ANN, ANN, bond strength, FRP-concrete bond, FRP, machine leaning.

I. INTRODUCTION
Repairing deteriorating, damaged, and deficient civil infras-
tructure has become a major concern for civil engineers
all around the world [1]. The rehabilitation of old struc-
tures is rapidly expanding, particularly in wealthy countries
that finished the majority of their infrastructure in the mid-
nineteenth century [2]. Furthermore, post-World War II con-
structions gave little consideration to durability concerns, and
the United States and Japan lacked understanding of seismic
design [3]. Chloride-induced corrosion of steel reinforce-
ments is one of the most prevalent causes of deterioration
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in reinforced concrete (RC) structures [4]. Reinforcement
corrosion reduces the structural performance and service life
of RC structures, and affects life-cycle cost of RC structures
rises as a result of the maintenance and repair interventions
required to address this problem. This issue is particularly
serious in some developed countries, where RC infrastructure
components have been in use for decades [5], [6]. Reinforcing
steel corrosion may create cracks in the surrounding con-
crete owing to the expansion pressure generated during the
production of corrosion products, in addition to the loss of
effective cross-sectional area of the reinforcing steel [7], [8].
The concrete cover may potentially spall as a result of the
expansion pressure. In general, such degradation reduces the
load carrying capacity of the RC member’s or structures
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and its stiffness [9]–[11]. The escalation of environmental
contamination in recent decades has resulted in a substantial
increase in corrosion phenomena in RC structures, which has
resulted in several collapses, particularly in those structures
that have not received appropriate maintenance. [12]–[16].
The Swiss Federal Laboratory for Materials Testing and
Research (EMPA) originally investigated this approach of
reinforcing RC beams in the mid-1980s, although much of
the research on FRP plate bonding for flexural strengthening
has taken place in the last 20 years [17].

The Hyogoken–Nanbu earthquake struck Kobe, Japan,
in 1995, causing widespread devastation [18]. As a result,
the Japan Building Disaster Prevention Association (JBDPA,
1999) released the Seismic Retrofitting ‘Design and Con-
struction Guidelines for Existing RC bridges using Fibre FRP
Materials’ in September 1999 [19]. As a result, cost-effective
and long-lasting solutions are required for concrete structure
repair, rehabilitation, replacement, and new construction [20].
Building construction and maintenance might benefit from
advanced FRP composite materials [21]. The advanced poly-
mer composite is a hybrid material made up of two major
components: fibre and polymer [22]. The fibres have high
strength and modulus while matrix material or polymer have
low modulus and strength [23]. The fibre uses the matrix’s
plastic flow to transmit burden/load to the fibre under stress,
resulting in a high-modulus and strength composite [24]. The
high aspect ratio fibres in the primary phase must be properly
distributed and bound with the matrix in the secondary phase.
As a result, the fibre, matrix, and interface are the three main
components of the composite [25]. To optimize the coupling
between the two phases and therefore allow stresses to be
dispersed over the matrix and hence transferred to the rein-
forcement, the interface between the fibre and thematrixmust
have sufficient chemical and physical bonding stability [26].

FRP has been widely used in civil structure strengthening
as a composite material with eminent characteristics [27].
FRP offers several advantages, including corrosion resis-
tance, long durability, and ease of construction, making it
one of the finest materials for concrete structure rehabilita-
tion [28]. Bonding is an essential factor in shear and flexural
strengthening systems of RC structures. External Bonded
FRP (EBF) is the most often used approach for reinforcing
existing RC components; nevertheless, despite its simplicity
of use, the EBR technique’s performance can be significantly
harmed by different forms of delamination/debonding of FRP
composite from concrete substrate [29].

In concrete sections reinforced with FRP material, the
fracture generally begins in the concrete substructure near
the FRP strip, and therefore the mechanical properties and
failure of the concrete play a major role in retrofitting effi-
ciency. In addition to bond length, FRP strip width, axial
stiffness, and its ratio to concrete element width all impact
the FRP concrete bond strength [30]. In order to determine
the FRP-concrete bond strength, numerous investigational
studies have been accompanied to examine the effect of
various parameters for both concrete and FRP composite

material including adhesive properties [31]. Afterwards on
the basis of these investigational and theoretical analysis,
several analytical prediction models were developed and
implemented in appropriate repair and rehabilitation codes
such as fib bulletin [32], Italian National Research Coun-
cil CNR-DT200/2004 [33], ACI [34], HB305 [35] and
CS-TR-55-UK [36].

The majority of these analytical models were developed
based on the restricted experiment data, which predict the
bond strength in a specific group of data samples, but for other
set of data samples the accuracy of the model may be differ
depending on the properties of concrete and FRP composite
material. Because of the complexities in the offered analyt-
ical approaches and the majority of the numerical models
given, they are unable to assess the true debonding behaviour.
As an alternative and complementary approach, Multiple-
linear Regression (MLR) methods are used for predicting
bond behaviour: computational methods such as ANN, FL,
SVM, FIS, GP, ANFIS, and GEP.

Metaheuristics are well-suited to combinatorial optimiza-
tion issues because they can frequently discover a satisfactory
solution in a reasonable period of time. As a result, they
are a viable alternative to exhaustive search, which would
require more time. Meta-heuristics are not problem-specific,
they may be applied to a wide range of issues. Like, genetic
algorithms are used inmany possible problems, although they
may not always be the best solution to each of these problems.
The ABC method is relatively resilient, converges quickly,
has a small number of parameters, and is very adaptable.

There are several studies reported in the literature that
employed hybrid ANN models in civil engineering applica-
tions, and some of them are: Sarir et al. [37] used whale
optimization and gene expression programming (GEP) tree-
based to calculate the bearing capacity of concrete filled steel
columns. TheGEP tree-basedmodels shows the better perfor-
mance among all the models (R2of Training and testing was
0.928 and 0.939 respectively). The accuracy of PSO-ANN
model in terms of coefficient of determination was found as
0.910 and 0.904 for training and testing data respectively.
Mansour et al. [38] explored the Neuro-Swarm algorithms
to predict the pile settlement. The predicted results reveal
that the neuro-swarm model has high accuracy up to a coef-
ficient of determination of 0.892. Apostolopoulou et al. [39]
and Sun et al. [40] used ANN and hybrid ABC-ANN to
predict and optimized the compressive strength of mortar
and concrete samples. Performance of FRP-concrete bond
strength by utilizing the ANN and ABC-ANN was evaluated
by Jahed et al. [41]. When compared to the ANN model,
the anticipated results suggest that ABC-ANN can perform
better. The author only employed 150 samples in his dataset,
which limits the model’s usefulness.

Paji et al. [42] investigated the compressive strength
behaviour under fresh and magnetic salty water with machine
learningmodels such as neuro-swarm and neuro-imperialism.
The training and testing results present the better perfor-
mance of neuro-swarm optimized algorithm. MLP-GWO
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(multilayer perceptron - gray wolf optimization) and ANFIS-
GWO (adaptive neuro-fuzzy inference system - gray wolf
optimization) models were used to calculate the bearing
capacity of the piles by Dehghanbanadaki et al. [43].
The results demonstrated that both the MLP and ANFIS
approaches were capable of accurately predicting the piles’
ultimate bearing capacity. But, MLP-GWO model provided
better results in terms of R2-value 0.991 for test data.
Khari et al. [44] used hybrid neuro-swarmmethod to forecast
the lateral defection of piles. In the lateral deflection pre-
diction process, the suggested PSO–ANN model was proven
to be capable of giving high accuracy while also having a
low system error. The value of coefficient of determination
of training and testing data were 0.953 and 0.944 respec-
tively. Asteris et al. [45] used only ANN to predict the shear
strength of RC beams. Momeni et al. [46] worked on ANN
model with two optimizing algorithms, Gravitational Search
Algorithm (GSA) and PSO to forecast the deformation of
geogrid-reinforced soil structures. The results of both the
GSA-ANN and PSO-ANN models were good enough. How-
ever, GSA-based ANN prediction model outperforms, with a
R-value of 0.981 and a system error of 0.0101 for testing data.

Liao et al. [47] optimized the ultimate axial load
of circular concrete-filled steel tubes using fuzzy-based
approach. Two hybrid models firefly algorithm (FFA) and
differential evolution (DE) were used to optimize the
conventional fuzzy systems (FS). Both FFA-FS and DE-FS
enhance accuracy above analytical models by 9.68 per-
cent and 6.58 percent, respectively, according to predic-
tion findings. Mohammed et al. [48] used neuro-imperialism
and neuro-swarm models to forecast the fly ash added
compressive strength of concrete. The neuro-swarm and
neuro-imperialism models have train and test R-values of
(0.9042 and 0.9137) and (0.8383 and 0.8777), respectively.
Although both strategies are capable of performing prediction
tasks, the results show that the proposed neuro-swarm model
is a better alternative technique for mapping concrete strength
behaviour.

These computational algorithms each have their own struc-
ture, as well as various strengths and limitations. It has been
demonstrated that their regression abilities are limited [49].
Many researches in the past already done their work in the
bond prediction behaviour, but as a consequence, the pre-
diction model established on them is still incomplete and
requires additional development.

To accurately design and simulate buildings using FRP
composite materials, it is critical to use an accurate and
efficient model for forecasting the bond strength of FRP-
concrete. In the proposed work, both optimized ABC-ANN
and GPRmodels have been deploy to calculate the FRP-bond
strength of RC beams. Researchers will be able to use the
findings of this study, to calculate the FRP-bond strength
with greater precision and less experimentation work. The
main limitations of this work is that a user can only use the
proposed model of this article for an input vector that be
within the interval of each input variable.

The work in this paper is divided into seven part. First
section deals with the basic information of the degradation of
concrete structures, rehabilitation, FRPs and machine learn-
ing approaches. In the second section the data related to
FRP-concrete bond was collection from the literature and
the performance indices used to evaluate the accuracy of this
study. In third section, the previously used analytical models
were collected and separates into two parts (i) codal models
and (ii) models. Codal model are used in the internationally
known standards such as Fib, ACI, HB 305 etc. and simple
models are directly extracted from the previous articles and
used by numerous authors. Section 4 introduces the ANN,
ABC-ANN And GPR models. Section 5 deals with the com-
pression of machine learning models with analytical models.
In section 6, the proposed formula derived from ABC-ANN
is described. The conclusion and future scope are mentioned
in the last section.

II. COLLECTION OF DATA
Currently there is no appropriate code for the experimental
investigation of FRP-concrete bond strength, and prior stud-
ies have only established a few traditional test configura-
tions, such as beams bending tests, single and double shear
tests. The bond strength testing setup is depicted in Figure 1.
The collected database contains both single and double
shear 744 samples results [29], [50]–[76] and parameters
which includes f ′c is the concrete with specified compressive
strength (MPa), bf is the width of the FRP laminate/fabric
(mm), Ef is the modulus of elasticity of FRP material (GPa),
tf is the thickness of FRP material (mm), bc is the width
of concrete block (mm), ff is the tensile strength of FRP
composite (MPa) and Lb (mm) is the length FRP bonded
material are tabulated in Table 1. Table 2 shows the statistical
features of each major component in the database.

Figure 2 depicts the frequency classification of test data
collected from the literature, represent the different param-
eters of concrete and FRP composite specimens, such as
compressive strength of concrete (f ′c ), width of concrete block
(bc), modulus of elasticity of FRP material (Ef ), tensile
strength of FRP material (ff ), thickness of FRP material (tf ),
is the width of the FRP laminate/fabric (bf ) and (Lb) is the
length FRP bonded material.

III. PREDICTION OF BOND STRENGTH USING EXISTING
ANALYTICAL FORMULATION
Presently, numerous analytical models for determine the bond
strength of FRP-concrete have been established, with varying
degrees of success. Some of the most important adopted
codes in the world recognized association such as ACI, fib
bulletin and HB305 were also used to predict the bond
strength.

A. CODAL STANDARDS TO PREDICT THE BOND STRENGTH
(a) Codal Model 1 - The first model which is selected in fib
Bulletin [32] was given by Neubauer and Rostasy [77] (1997)
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FIGURE 1. Arrangement of bond strength test setup.

TABLE 1. Parameters for bond strength analysis from collected database.

is expressed below:

Pu=


064 kpbf

√
0.53Ef tf

(
f ′c
)0.5

, Lb≥Le

0.64
Lb
Le

(
2−

Lb
Le

)
kpbf

√
0.53Ef tf

(
f ′c
)0.5

, Lb<Le

(1)

where, kp is the geometric factor and calculated using below
formula. Le is the effective length calculated using equation 3.

kp =

√√√√√1.125
(
2− bf

bc

)
1+ bf

400

≥ 1 (2)

Le =

√
Ef tf

1.06
(
f ′c
)0.5 (3)

(b) Codal Model 2 - To predict the bond strength Chen
and Teng [78] (2001) model which was adopted by ACI 440.
R-08 [34]. The formula for model prediction is shown below:

Pu = 0.427βpβL
√
f ′cLebf (4)

where, Pu = applied load (kN), βp and βL are the geometric
parameters, f ′c is the concrete with specified compressive
strength (MPa), Le is the effective length (mm) and bf is the
width of the FRP laminate/fabric.
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FIGURE 2. Distribution of the inputs and output variables (a) Input 1 f ′
c (b) Input 2 bc (c) Input 3 Ef (d) Input 4 ff (e) Input 5 tf (f) Input 6 bf (g) Input 7 Lb

(h) Output Pu.

The geometric parameter βp, βL and effective length is
calculated using below expressions:

Le =

√
Ef tf√
f ′c

(5)

βp =

2− bf f
bc

1+ bf
bc

0.5

(6)

βL =


1, L ≥ Le

sin
(
πLb
2Le

)
, L < Le

(7)

where, Ef is the modulus of elasticity of FRP material (MPa),
tf is the thickness of FRP material (mm), bc is the width
of concrete block (mm) and Lb is the length FRP bonded
material.
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TABLE 2. Statistical features of each major component in the database.

(c) Codal Model 3 - The fourth FRP bond predic-
tion model is given by Italian National Research Council
CNR-DT 200/2004 [33] is expressed as:

Pu =


bf
√
2Ef tf kf , Lb ≥ Le

bf
√
2Ef tf kf

Lb
Le

(
2−

Lb
Le

)
, Lb < Le

(8)

where, kf is the specific fracture energy and calculated using
following formula:

kf = 0.03kb
√
f ′c fc (9)

kb =

√√√√ 2− bf
bc

1+ bf
400

≥ 1 (10)

Le =

√
Ef tf
2fc

(11)

where, fc is the mean value of concrete tensile strength.
(d) CodalModel 4 - Seracino et al.’s [79] FRP bond predic-

tion model is presented in the HB 305 (2007) [35] standard.
The formula given by the authors is expressed as:

Pu = 0.853βa
(
f ′c
)0.33 (df

bf

)0.25√(
2df + bf

)
Ef bf tf (12)

where, df = thickness of the failure plane and βa is the range
of values as expressed in below equation:

βa =


1, Lb ≥ Le

Lb
Le
, Lb < Le

(13)

Le =
π

2
√
τf (2df+bf )
δEf f

bf t f

(14)

where, τf is the peak interface shear stress and δf = slip
at maximum interface shear stress calculated using below
expression:

τf =

(
0.802+ 0.078

df
bf

) (
f ′c
)0.6 (15)

δf =
0.73

(
df
bf

)0.5 (
f ′c
)0.67

τf
(16)

(e) Codal Model 5 - The fifth model is given by the
Concrete Society Committee CS-TR-55-UK [36] can be
expressed as:

Pu =


0.5 kbbf

√
Ef tf fct , Lb ≥ Le

0.5 kbbf
√
Ef tf fct

Lb
Le

(
2−

Lb
Le

)
, Lb < Le

(17)

where, fct is the characteristic axial tensile strength of con-
crete, kb and Le are calculates using equations:

kb = 1.06

√√√√ 2− bf
bc

1+ bf
400

≥ 1 (18)

Le = 0.7

√
Ef tf
fct

(19)

B. MODELS OTHER THAN CODAL STANDARDS
(a) Model 1 = Sato et al. (1997) [80] and Japan Concrete
Institute (2003) [81] suggested a model to predict the FRP
bond strength using following equations:

Pu = kLe
(
bf + 7.4

)
(20)

k =
(
2.68× 10−5

) (
f ′c
)0.2 Ef tf (21)

Le = 1.89
(
Ef tf

)0.4 if Lb ≥ Le (22)

where, Pu = bond strength (kN), bf = width of FRP lami-
nate/fabric, Ef is the modulus of elasticity of FRP material
(MPa), tf is the thickness of FRP material (mm), Le is the
effective length (mm).

(b) Model 2 - Khalifa et al. (1998) [82] suggested a model
to predict the FRP bond strength using equation:

Pu = kLebf (23)

k and Le is calculated using equation 24 and equation 25
respectively.

k =
(
110.2× 10−6

)( f ′c
42

)
Ef tf (24)

Le = e6.134−0.58 ln(Ef ·tf ) (25)

(c) Model 3 - Maeda et al. (1999) [83] proposed a model
to predict the FRP bond strength using equation:

Pu = kLebf (26)

VOLUME 10, 2022 3795



A. Kumar et al.: Optimized Neuro-Bee Algorithm Approach to Predict FRP-Concrete Bond Strength

k and Le is calculated using equation 27 and equation 28
respectively.

k =
(
110.2× 10−6

)
Ef tf (27)

Le = e6.134−0.58 ln(Ef ·tf ) (28)

(d) Model 4 - Yang et al. (2007) [84] proposed a model to
predict the FRP bond strength using equation 29.

Pu =

(
0.5+ 0.08

√
0.01Ef tf

ff

)
bf Lek (29)

where, ff is the tensile strength of FRP material in (MPa) and
Le = 100 mm.

k = 0.5ff (30)

IV. ARTIFICIAL INTELLIGENCE TO PREDICT
FRP-CONCRETE BOND STRENGTH
To predict the bond strength in this used algorithms are ANN,
ANN-ABC and multiple linear regressions.

A. ARTIFICIAL NEURAL NETWORK (ANN)
ANNs are one of the most commonly utilized approaches in
the field of artificial intelligence (AI). These techniques are
simple, have excellent performance, and have a cheap compu-
tational cost [85]. In the literature, there are several varieties
of ANNs, including Spiking Neural Networks (SNN), Feed-
forward Neural Networks (FFNN), Kohonen self-organizing
feature map networks (SOM), Recurrent Neural Networks
(RNN), and Radial basis function networks (RBF) [86]. The
FFNN is the most commonly used and simplest of all ANNs.
FFNNs use one-way connections between neurons in various
layers to accept information as inputs on one side and pro-
duce outputs on another side [87]. FFNNs are classified into
two types: Single-Layer Perceptrons (SLP) and Multi-Layer
Perceptrons (MLP). There is only one perceptron in SLPs.
SLPs, despite their simplicity, are incapable of dealing with
non-linear issues. As a result, MLPs with more than one
perceptron built in various layers are used [88], [89].

In MLP’s primary components are the input layer, hidden
layer(s), and output layer. The hidden layer contains the
activation function, weights, and units (or neurons). Without
performing any computational calculation, the input layer
takes information from the outer context and transmits it to
hidden layers neurons. The majority of a network’s internal
processing is performed by hidden layers, which are sand-
wiched in the input and output layers. Finally, the output layer
is in charge of delivering network computations to the outside
world. The activation function describes how the neurons
process the input value to create the output value for the
succeeding layer, and the subsequent layers are fully linked
by weight.

Data normalization was done before to training the net-
work in order to reduce undesired feature scaling effects and
provide higher computational stability. All parameters were
converted linearly in accordance with equation 31 and the

Log-sigmoid [90]–[95] activation function detect values in
the interval [0, 1]. The normalization process is quantitatively
expressed as follows.

x∗ =
(x − xmin)

xmax − xmin
(31)

where x∗ = normalizing value, x = original value, xmax =
upper value in the selected data set, and xmin is the lower value
in the selected data set.

TanSig =
2

1+ e−2x
− 1 (32)

Artificial neural networks (ANNs) were trained and eval-
uated using the MATLAB R2021a (MathWorks, 2021) pro-
gramme [96]. To train the proposed network inMATLAB, the
feed-forward back propagation method using the Levenberg-
Marquardt (LM) algorithm was used. The use of a single
hidden layer to handle several nonlinear problems has been
validated in the literature. Throughout this layer-by-layer
training process, the input signals were sent forward, while
the error signals were sent back. The weights were continu-
ally changed until the output layer gave the desired output.
744 dataset points were divided into three groups on the
random basis. For training, validation, and testing, 520 data
(70 percent), 112 data (15 percent), and 112 data (15 percent)
were acquired, respectively. In the network training process
the training and validation sets were employed, while the test
and training sets were used to evaluate network performance.

Five frequently used performance indices, including mean
absolute error (MAE), coefficient of determination R-squared
(R2), correlation coefficient (R), root mean squared error
(RMSE), mean square error (MSE) and mean absolute per-
centage error (MAPE) are used to measure the performance
of each FRP bond strength prediction model. These indexes’
relevant expressions are in equation 33 to equation 37. Addi-
tionally, a20-index is also used to measure the performance
of each model and mentioned in equation 38.

R2 = 1−

(∑N
i=1 (ai − pi)

2∑N
i=1 p

2
i

)
(33)

RMSE =

√√√√ 1
N

N∑
i=1

(ai − pi)2 (34)

MAE =

∑N
i=1 |ai − pi|

N
(35)

MSE =
1
N

N∑
i=1

(ai − pi)2 (36)

MAPE =
1
N

∣∣∣∣∣
∑N

i=1 |ai − pi|∑N
i=1 |ai|

∣∣∣∣∣× 100 (37)

a20− index =
m20
N

(38)

where, N is the number of points in the data set, and a and
p sets are the actual and projected output sets, respectively.
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m20 is the number of samples with values rate mea-
sured/predicted value (range between 0.8-1.2).

Researchers have used trial and error techniques to identify
the optimum number of neurons and the suitable ANN. In this
study, 2 to 24 number of neurons were used to define the opti-
mum ANN architecture. To determine the optimum network
design, traditional statistical errors and performance metrics,
such as MSE and R, were utilized. As a result, the evaluation
index (R,MSE) of each pattern is calculated and the outcomes
are determined in line with the competence of the responses.
Finally, calculate the rank for each of the proposed patterns
and the optimum architecture of the network is chosen. The
outcomes in the assessment of bond strength in artificial
neural network are shown in Table 3.

As indicated in Table 3, the 19 neurons was identified
as the best network among all the neurons based on the
ranking systems. Figure 3 provides a schematic overview
of the selected neural Pu estimating networks. The values
of the correlation coefficients (R) and MSE in the selected
network for training and testing analysis are 0.97094 and
0.9378 and notably small values 0.00105 and 0.00262 respec-
tively. These data demonstrate the optimized artificial neu-
ral network’s strong capabilities for calculating the bond
strength. Although validation of numerical findings is not
always included in artificial intelligence-based studies, there
have been numerous examples described in the literature
where the model dataset is created using numerical modelling
without validation [46], [94].

B. ARTIFICIAL BEE COLONY - ARTIFICIAL NEURAL
NETWORK (ABC-ANN)
For dealing with restricted optimization issues, many
deterministic and stochastic methods have been developed.
Deterministic methods, such as Feasible Direction [98]
and Generalized Gradient Descent [99], involve significant
assumptions on the objective function’s continuity and differ-
entiability. As a result, their applicability is restricted because
these qualities are rarely seen in real-world issues. Stochastic
optimization methods, such as Particle Swarm Optimization
(PSO), Genetic Algorithms (GA), and Evolutionary Program-
ming do not make such assumptions and have been effec-
tively utilized for solving restricted optimization issues in
recent years [100]. For numerical optimization challenges,
Karaboga developed an Artificial Bee Colony (ABC) method
based on honey bee foraging behavior [101]. Karaboga and
Basturk evaluated the performance of the ABC method on
unconstrained problems to that of other well-known con-
temporary heuristic algorithms such as Particle Swarm Opti-
mization (PSO), Genetic Algorithm (GA) and Differential
Evolution (DE). The ABC method is extended to solve
constrained optimization (CO) problems.

One of the most prominent swarm-based heuristic opti-
mization methods is the ABC algorithm. It comprises three
sorts of bees: employed bees, onlooker bees, and scout bees.
The ABC algorithm makes several assumptions. Among
these are: half of the colony is made up of employed bees

and other half consists of onlooker bees [96]. The num-
ber of employed bees is exactly equal to the number of
onlooker bees. The following are the basic steps of the ABC
algorithm:

The ABC creates a randomly dispersed starting population
of SN solutions (food sources), where SN represents the
size of the swarm. Let xi = xi1 , xi2 , . . . , xin . xi shows the
ith solution in the swarm. Each employed bee xi creates a
new applicant solution Vi in its near area, as mentioned in
equation 39.

vi,j = xi,j + φi,j ×
(
xi,j − xk,j

)
(39)

where xi denotes the food supply generated by the employed
bees, and n denotes the necessary solution size, random
generated number φ in the range of 0 and 1, k is a value
chosen at random between 0 and the maximum amount of
food resources (k6=i), between 0 and the maximum number
of solutions, j is a random number (weights).

After all employed bees have completed their search, they
waggle dance to communicate the food source information
with onlooker bees. An onlooker bee evaluates the nectar data
of all used bees and picks a food source which is likely to be
proportionate to the quantity of its nectar. This probabilistic
selection method is a ‘‘roulette wheel’’ selection system,
as follows:

pi =
fiti∑SN
j=1 fitj

(40)

where, fiti is the fitness value of the it
h
swarm solution. It is

observed that, the better solution i, the higher probability of
the it

h
food source will be chosen.

The scout bee phase is in charge of determining the maxi-
mum number of epochs, which indicates the number of times
the solution is permitted to degrade. If a position cannot be
enhanced after a certain number of cycles (called a limit),
the food supply is thereafter discarded. Assume xi is the
discarded source, and the scout bee identifies a new food
source to replace it as follows:

xi,j = lbj + rand(0, 1)×
(
ubj − lbj

)
(41)

where, rand(0,1) is a random number within the range [0,1]
based on a normal distribution and ub, lb are upper and lower
boundaries of the jt

h
dimension, respectively.

The ABC algorithm’s goal is to discover appropriate
weights and optimize them in the search environment.
To accomplish this goal, several ABC-ANN patterns with
varying numbers of bees were created using the suggested
19 neurons in the ANN structure. As a result, the number
of bees will be increased until the minimal error is achieved
and the test and error research has been completed to identify
additional interconnected factors.

As shown in Table 4, the ABCwith 60 bees was recognized
as the optimal network established on basis of ranking sys-
tems i.e. rank one means optimum number of bees. The test
results which obtained from the optimum number of bees in
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FIGURE 3. Structure of ANN.

TABLE 3. Performance of ANN model.

TABLE 4. Performance of optimized ANN-ABC model.

training and testing 0.971409 and 0.956165 are the R values
and significantly tiny values 0.00113140 and 0.00187475 are
the normalized MSE values.

C. GAUSSIAN PROCESSED REGRESSION (GPR)
GPR is a Bayesian inference method that works with real-
valued variables [102]. It is a non-parametric prediction
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TABLE 5. Comparison of ANN, ABC-ANN, and GPR.

TABLE 6. Comparison of existing models with developed database.

TABLE 7. Weight and bias of optimized model.

model for a specific dataset function, D = (xi, ti), i = 1, 2,
. . . ,N where xi is an input and ti is a target variable. A dis-
tribution function, termed ‘‘Gaussian process regression’’,
which may be expressed as, can be used for the Bayesian
regression.

P(f | D) =
p(f )p(d | f )

p(D)
(42)

In GPR a covariance function called k(x, x’) is the primary
function. Covariance function can be best performed as:

k
(
x, x ′

)
= σ 2

f exp
{
−
1
2

(
xi − xj
l2

)}
(43)

where, σ 2
f = maximum permissible variance and l = length

of scale. The output of latent function is given as:

y = f (x)+ ε (44)

where, f(x) = latent function and ε = Gaussian noise. The
latent function is treated as a random variable in GPR. If the
difference between x and x’ approaches zero for the afore-
mentioned covariance function, this indicates that the f(x)
function is near to the real function f(x)’. By adding the noise
values, the preceding equation may be rewritten as follows.

k
(
x, x ′

)
= σ 2

f exp
{
−
1
2

(
xi − xj
l2

)}
+ σ 2

n δ
(
x, x ′

)
(45)
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FIGURE 4. Predicted and measured values of ANN Training, ANN Testing, ANN, Codal Model-1, Codal Model-2, Codal Model-3, Codal Model-4 and Codal
Model-5.

where, σ 2
n = variance of n observations and δ(x, x’) = Kro-

necker delta function. The prediction function can be written
as:

y = f (x)+ N
(
0, σ 2

n

)
(46)

The kernel or covariance function k(x, x’) given as:

K =


k (x1, x2) k (x1, x2) . . . k (x1, xn)

k (x2, x1) k (x2, x2) . . . k (x2, xn)

...
...

...

k (xn, x1) k (xn, x2) . . . k (xn, xn)

 (47)

V. COMPARISON OF PERFORMANCE OF AI MODELS AND
EXISTING MODEL
The ANN, mutated ABC-ANN and GPR model, testing
and training outcomes are assessed using equations 33
to 38, used to find out the performance and errors in the
predicted values. It should be highlighted that these criteria
are evaluated using actual targets created by standardized
data in order to offer a clear comparison of model error
values. The detailed of each analyzed model is tabulated in
Table 5.

The ANN, mutated ABC-ANN, and GPR results are com-
pared to the earlier work, methodologies, and international
codes which are mentioned in equation 1 to equation 30.
Table 6 illustrates the findings of test results obtained from
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FIGURE 5. Predicted and measured values of Model-1, Model-2, Model-3, Model-4, GPR and ABC-ANN.

statistical criteria, coefficient of determination R-squared
(R2), correlation coefficient (R), as well as error markers of
RMSE,MSE,MAE andMAPE. The standard deviation of the
original data is 8.7965 which is quite closer to the ABC-ANN
model data.

Figure 4 and Figure 5 depicts the comparsion study of
experimental measured with respect to the predicted data
using various AI algorithms and existing models.

Figure 6 depicts the scattering of absolute error values
(AEV) (kN), so that the error value of the recommended
approaches may be compared directly with those of the exist-
ing literature models and codal standards. The spreading of
values in mutated ANN and GPR models are more focused
within the 5 kN range of bond strength. As a consequence,
the ABC-ANN and GPR model may be concluded that they
are superior than other approaches and have the best precision
and robustness. As a result, the AEV of ABC-ANN and
GPR are almost (approximately 94.37% of the time) less than
5.98 kN and (approximately 94.33% of the time) less than
5.98 kN respectively.

VI. PROPOSED FORMULATION FROM ABC-ANN
The operation of ANN is only feasible, when the network’s
input and output weights, as well as bias values, are known
at multiple levels. The predicted FRP-concrete bond strength
may be calculated using excel spreadsheet application utiliz-
ing the findings presented in this Table 7 as a direct form of
prediction formulation. Table 7 shows the weight and bias

TABLE 8. List of Symbols.

used for predicting the output values. These values are used
to find out the X1 to X19 constants which were used in the
equation 48.

Xi = tanh
(
WiXi,n orm + Bi

)
(48)

Pupredicted = purlin (WoXi + Bo) = WoXi + Bo (49)

Table 7 shows the values which contains different param-
eters to evaluate the bond strength with other constant values
and having activation function ‘tansig’. Equation 49 might
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FIGURE 6. Absolute error values.

predict bond strength with up to 94 percent accuracy. Put
all the measured values form above mentioned equation in
equation 49.

VII. CONCLUSION AND FUTURE SCOPE
In this article, the FRP-concrete bond strength is evaluated
using an ANN, ABC-ANN, and GPR techniques. A hybrid
method ABC-ANN is used to optimize the ANN model for
better bond strength predictions. In this case, 744 exper-
imental data were gathered from the literature, including
concrete compressive strength, FRP laminate/fabric width,
FRP material modulus of elasticity, FRP material thickness,
concrete block width, FRP composite tensile strength, and
FRP bonded material length. All of the data utilized was
scaled and standardized between 0 and 1 in order to get
the appropriate responses. The ANN, ABC-ANN, and GPR
prediction findings were compared with current techniques
for evaluating the bond strength of FRP-concrete given by

international codal standards and the other four models from
the prior literature study. In ANN and ABC-ANN, 70% of the
data is utilized for training, 15% for testing, and the remaining
15% for validation. The accuracy of bond strength estimate
might be improved by using these two methods, ABC-ANN
and GPR. The empirically suggested formulation, which was
built utilizing the mutated ABC with ANN’s weights and
bias, may be easily implemented for bond strength evaluation.
The ABC-ANN and GPR prediction results are accurate for
more than 90% of experimental data. The main limitations
of this work is that a user can only use the proposed model
of this article for an input vector that be within the inter-
val of each input variable. Researchers and FRP applicators
may benefit from using this model, because it provides good
accuracy and consume less time. This model may be used
by FRP applicators and FRP manufacturing companies to
enhance the bonding capacity of existing adhesives and FRP
systems. In future research, the accuracy of this model might
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be improved by employing a larger number of experimental
databases and comparing it to all natural-inspired algorithms
in order to improve the prediction of FRP concrete bond
strength.
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