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Abstract: In healthcare, there are rapid emergency response systems that necessitate real-time actions
where speed and efficiency are critical; this may suffer as a result of cloud latency because of the delay
caused by the cloud. Therefore, fog computing is utilized in real-time healthcare applications. There
are still limitations in response time, latency, and energy consumption. Thus, a proper fog computing
architecture and good task scheduling algorithms should be developed to minimize these limitations.
In this study, an Energy-Efficient Internet of Medical Things to Fog Interoperability of Task Scheduling
(EEIoMT) framework is proposed. This framework schedules tasks in an efficient way by ensuring
that critical tasks are executed in the shortest possible time within their deadline while balancing
energy consumption when processing other tasks. In our architecture, Electrocardiogram (ECG)
sensors are used to monitor heart health at home in a smart city. ECG sensors send the sensed data
continuously to the ESP32 microcontroller through Bluetooth (BLE) for analysis. ESP32 is also linked
to the fog scheduler via Wi-Fi to send the results data of the analysis (tasks). The appropriate fog node
is carefully selected to execute the task by giving each node a special weight, which is formulated on
the basis of the expected amount of energy consumed and latency in executing this task and choosing
the node with the lowest weight. Simulations were performed in iFogSim2. The simulation outcomes
show that the suggested framework has a superior performance in reducing the usage of energy,
latency, and network utilization when weighed against CHTM, LBS, and FNPA models.

Keywords: low-latency; Cardiovascular Disease; ECG sensors; fog computing; health monitoring
system; internet of medical things; scheduling algorithms; task scheduling

1. Introduction

As technology has advanced, applications of the Internet of Things (IoT) have become a
part of our everyday lives. As a result, the number of devices employed in these applications
will grow, resulting in massive amounts of data being generated. Because the information
will be transmitted to the cloud for processing, there will be a delay in response because
the cloud is located far away from these devices. Every physical device, such as cameras,
automobiles, sensors, wearables, and home appliances, is connected via IoT apps [1]. One
of the core branches of IoT is ubiquitous home healthcare, also known as the Internet of
Medical Things (IoMT). Recent developments in IoT and the increasing use of wearables
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to collect physiological data and vital signals have led to new distributed computing
paradigms that combine wearables and IoMT for remote telecare [2]. Low latency, mobility,
location awareness, and a fast reaction time are all requirements for many applications. For
different applications of healthcare systems, a straightforward sensor-to-cloud architecture
is not feasible, owing to the fact that most clinics and hospitals do not want to retain patient
data externally [3]. Additionally, there is always the possibility of a crucial network or
data center failure, putting patients’ lives in jeopardy [4]. Using the cloud only causes
delays while transferring information from IoT devices to the cloud and from the cloud to
doctors or hospitals. In the healthcare system, there must be a rapid response to emergency
situations, and this requires actions in real time, where time and efficiency play an important
role, and this may be harmed as a result of the cloud’s latency [5]. Thus, classic centralized
cloud computing should be expanded to a distributed architecture. The term “distributed
architecture” denotes the process of separating duties and subsequently offloading them to
several nodes. Despite the fact that many academics have created techniques to increase
the performance of cloud computing in real-time applications, IoT applications and mobile
services still face several hurdles, including low latency, high reaction speed, cost, energy
consumption, mobility support, and geo-distribution [6]. Thus, it was essential to create
new technology that was closer to IoT devices and that could solve the cloud’s difficulties.
In 2012, Cisco proposed fog computing [7].

Fog computing is a novel computing paradigm that spreads cloud computing from
the network’s core to its edge. Its purpose is to increase user access to computer, storage,
and networking resources [8]. Previous challenges can be dealt with by fog computing [9].
According to the prediction by Cisco, approximately 1 trillion IoT devices will be linked
to the internet by 2025 [10]. Resource management in the fog computing environment
has become a big concern due to changes in the devices of users in terms of bandwidth,
computation, latency, and storage [11]. Tasks in a fog environment are classified into
two categories: those that require computing intensity and those that require information
intensity. When scheduling tasks that require a lot of computational power, the scheduler
moves the data to a high-productive resource, which reduces task achievement time.
Furthermore, it is sought to limit the amount of data transfer when scheduling jobs that
need data intensity. As a result, the data migration time is shortened [12]. The amount of
IoT equipment is currently growing, which raises the processing demand on fog and cloud
nodes. As a result, an efficient technique for scheduling jobs and managing resources in fog
and cloud settings is required [11]. One of the important technologies that aid the seamless
operation of IoT healthcare systems and monitoring applications is fog computing. Since
healthcare applications are latency-sensitive and require real-time monitoring, decision
making and data analysis are critical requirements. Home nursing for the elderly and
patients with chronic diseases such as heart disease, high blood pressure, diabetes, and so
on is an example of this type of application [4,13].

The Internet of Medical Things (IoMT) refers to the ability to connect medical devices
to monitor vital medical signals and diagnose patients’ diseases [14]. Additionally, it inter-
connects medical devices with healthcare providers such as hospitals, private companies,
or medical researchers [15]. IoMT combines IoT with conventional medical equipment
and expands sensing and capabilities [16]. IoMT has the ability to transmit data across
a network without demanding human-to-human or human-to-computer interaction [14].
The emergence of IoMT is mainly due to the increased use and development of connected
and distributed medical devices [15], as well as the emergence of many health applications.
IoMT plays an essential and vital role in remote healthcare monitoring. One of the most
important types of health monitoring is related to the heart because the measured vital
signs can detect numerous diseases that are hidden in nature, such as arrhythmia [14].
Due to the critical nature of healthcare-related systems, IoMT still faces various difficulties,
especially with regard to reliability, safety, and security [15]. IoMT is one feature that 5G
supports. 5G decreases latency, which increases connectivity between devices (such as
healthcare devices). Moreover, it improves the QoS of data in real time, which is required
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in IoMT. In other words, it can be said that 5G facilitates IoMT [17]. IoMT in the healthcare
system has the ability to supply hospital services at home at low costs without decreasing
quality [17]. IoMT architecture consists of three main stages: The first stage is to collect data
and signals from the patient through biomedical health monitoring sensors. The second
stage is data analysis in the fog layer. In the third stage, if the data need further analysis
and processing, they are sent to the cloud. Additionally, patients’ information and their
medical history are stored in the cloud [18].

Continuous health monitoring is required in the case of numerous chronic diseases,
and normal examination of physiological information is essential in these cases. However,
hospitalization is not required for the purposes of continuous monitoring. In addition,
the hospital stay is costly and consumes patients’ precious time. Further, with the spread
of the Coronavirus, the elderly must be protected and not put their lives at risk by being
in the hospital for long periods of time. Individuals can be infected with the COVID-19
virus by other individuals who have the virus. It is spread by direct contact, by respiratory
droplets while sneezing or coughing, or by contacting a virus-infected surface and then
touching the nose, eyes, or mouth [19]. The COVID-19 virus poses a critical hazard,
particularly for elderly people and individuals who have chronic diseases, such as heart
disease, hypertension, and diabetes [20]. It is starting to spread among medical teams
and nurses in hospitals, and this may pose a threat to the health of hospitalized patients.
Therefore, continuous health monitoring at home is the best option.

According to a World Health Organization report (WHO), approx. 17.9 million people
died globally from Cardiovascular Disease (CVD). A third of deaths of people under the
age of 70 and 4 in 5 deaths are due to strokes and heart attacks. Regular monitoring of
patients may improve patients’ health and reduce mortality. ECG monitoring systems are
advanced equipment used in the healthcare sector and have evolved significantly over
time [21]. According to the latest research on thirty million healthcare-related IoT apps,
the information flow reaches 25,000 records per second [22]. Additionally, in intelligent
cities with more information references, information flows in real time can quickly increase
every second. Moreover, due to the rapid rise of IoT, the processing capability of most
gadgets cannot be attained [23]. There are various problems in fog computing. One of
the main significant problems is the task scheduling operation and the identification of
the appropriate resource to carry out the task. The task should not be transferred a long
distance for processing, which in turn increases energy consumption and delay, so choosing
the appropriate resource is difficult. To address several flaws in present task scheduling
algorithms, an Energy-Efficient Internet of Medical Things to Fog Interoperability of Task
Scheduling Framework is proposed. We place processing closer to IoT devices to decrease
latency and energy consumption by minimizing the physical distance between devices and
computing nodes. Additionally, we limit the energy in IoT devices that can be consumed
when transferring tasks to a far computing node. In our architecture, ECG sensors are
used to monitor heart health at home in a smart city. ECG sensors send the sensed data
continuously to the ESP32 microcontroller through Bluetooth Low Energy (BLE). The ECG
signals are analyzed in an ESP32 microcontroller that is also connected to the fog scheduler
via Wi-Fi to send the results data of the analysis (tasks). The appropriate fog node is
carefully selected to execute the task by giving each node a special weight based on the
expected amount of energy consumed and latency in executing this task and choosing the
node with the lowest weight.

The main contributions of this study can be summarized as follows:

1. It suggests an Energy-Efficient Internet of Medical Things to Fog Interoperability of
Task Scheduling (EEIoMT) Framework for real-time healthcare applications.

2. It proposes an efficient task scheduling algorithm that increases proficiency and
quality of service (QoS) and reduces energy consumption in the system and the
latency for healthcare tasks.

3. The proposed solution deploys IoT services on accessible edge devices to enhance the
continuous monitoring of chronic patients, improve their quality of life, and lower
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medical system expenses by exploiting the processing and storage capabilities at the
network’s edge.

The arrangement of this study is organized into the following sections: Section 2
explores the related work on scheduling in fog computing and health monitoring systems.
Section 3 presents the research methodology of the EEIoMT framework with the suggested
algorithm. Section 4 shows the experimental results’ evaluation and a comparison with
state-of-the-art methods. Section 5 concludes the study and introduces future work.

2. Related Work

Most of the related studies that focus on task scheduling in fog computing and health-
care monitoring are examined in this part to highlight the contributions and compare the
outcomes with the suggested framework.

Paul et al. [4] introduced a three-layer architecture to monitor patient health using
cloud and fog computing. Cloud computing servers, fog computing servers and resources,
and sensors such as biomedical health monitoring sensors make up this architecture. The
fog tier performs the aggregation and analysis of data that are obtained from edge devices.
It then uses a task scheduling algorithm to deliver tasks to the cloud and fog nodes. The
proposed algorithm and architecture were assessed as regards network use, delay, and
power usage by comparing simulation results to the cloud design alone. Hassan et al. [24]
presented a three-layer distant pain tracking system design, in which the fog node uses
digital signal processing techniques to detect pain. The proposed solution had lower latency
than a cloud-only implementation. The proposed method, however, will not be sufficient
when the number of patients rises because the hospital’s data are handled by a single
fog node. Abdelmoneem et al. [25] suggested a cloud-based, interoperable healthcare IoT
architecture to reduce application latency and costs and meet time constraints. To achieve
an effective balance in the distribution of healthcare tasks, a task scheduling and allocation
approach was proposed. A variety of tasks and cloud nodes were used to evaluate the
proposed system’s performance. Fog nodes are responsible for executing computational
tasks such as context management and data analysis. The scheduling module represents a
mapping among tasks represented as a binary graph that will be executed on fog nodes
and cloud servers. The task dispatcher module assigns the scheduled tasks to fog nodes or
the cloud. In terms of mass ratio, delay, and cost, the simulation’s results were satisfactory.
However, it lacks necessary QoS metrics in healthcare applications, including energy
consumption, processing time, and memory usage. Mukherjee et al. [26] presented a
three-layer mobility-aware Internet of Health Things (IoHT) architecture that included
sensor nodes, fog nodes for parametric health control, and a cloud server for evaluating
aberrant health conditions. The performance of the suggested algorithm and architecture
in terms of latency and power use was evaluated by comparing simulated results to the
cloud-only architecture.

Mutlag et al. [27] introduced the Multi-Agent Fog Computing (MAFC) concept for
managing important healthcare tasks. This strategy allocates fog resources by allowing
for task prioritization at two levels: locally on fog nodes and globally in the cloud. To
optimize scheduling for critical tasks, this model maps between three tables: task pri-
orities, network load, and network resources. Then, it assigns tasks according to these
tables. However, numerous criteria are required to process critical and emergency tasks.
In terms of energy consumption, managed services, and latency, the proposed model’s
performance was assessed by comparing simulation results to the cloud-only architecture.
Ying Wah et al. [28] proposed a system relying on the fog–cloud paradigm for healthcare
applications. This system implemented a novel algorithm, called Health Care-awareness
Cost-Efficient Task Scheduling (HCCETS), which defines vital tasks of a heartbeat appli-
cation to schedule and execute them with the lowest cost while meeting their deadline.
To acquire the cost-efficiency of tasks during allocation under the requirements of QoS,
the method is implemented in several phases: task prioritization, resource search, and
task scheduling. The outcomes indicated that the performance of the proposed algorithm
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exceeded that of previous algorithms in terms of cost. However, it does not consider
resource limitations or energy consumption. Additionally, this system does not support
mobility awareness. Asghar et al. [29] presented a fog-relaying architecture for a health
tracking system to reduce network usage and latency. When the health monitoring system
is widely deployed, they also suggested a novel Load Balancing Scheme (LBS) to help fog
nodes manage their load. They performed large-scale simulations in the iFogSim toolkit to
validate the efficacy of the proposed technique, comparing the results to the cloud-only ar-
chitecture, the LoAd Balancing (LAB) scheme, and Fog Node Placement Algorithm (FNPA)
in terms of network use and latency. In comparison to cloud-only, LAB, and FNPA, the
suggested health monitoring solution dramatically reduced network usage and latency.
However, it does not consider energy consumption. The Fog Node Placement Algorithm
(FNPA) was presented by Tun and Paing [30], which connects IoT devices to the closest
fog node with sufficient resources (bandwidth, RAM, and CPU). FNPA outperformed the
cloud-only implementation and the fog node with a minimal distance method by signifi-
cantly reducing latency, implementation cost, and network usage. The Critical Healthcare
Task Management (CHTM) model was developed by Mutlag et al. [31] and tested using an
ECG dataset. At the fog level, they also established a resource scheduling model for fog
nodes. They also demonstrated a multi-agent system that can manage the entire network
from the edge to the cloud. To successfully manage crucial activities, the proposed solution
exceeds the restrictions of interoperability, scheduling, resource sharing, and dynamic job
assignment. When compared to the cloud-only model, the simulation outcomes indicated
that their model decreased the time response by 90%, network usage by 79%, cost by 80%,
network latency by 65%, and energy usage by 81%.

The importance of the location where the task is to be examined in the fog comput-
ing architecture was not taken into account by the task scheduling algorithms in most
related publications. The incoming tasks from the IoT device were assigned to the nearest
accessible fog node in these cases, regardless of the node’s capacity. Further, several of
them failed to examine the task’s requirements and importance. In the evaluation of the
proposed architectures, several publications never addressed the performance metric of
energy consumption. Furthermore, the performance of some proposed architectures and
algorithms was assessed by contrasting simulation outcomes with cloud-only architectures
but not with fog-based architectures. In contrast to previous research, we ran extensive
simulations using four distinct topology configurations and compared the outcomes to
the best three fog-based implementations: CHTM, LBS, and FNPA models. The proposed
EEIoMT outperformed the CHTM [31], LBS [29], and FNPA [30] models in four parameters:
latency, energy consumption, network usage, and CPU usage.

Many researchers have developed fog-based designs for health monitoring systems
that outperform cloud-based architectures. However, for the previously presented health
observing systems, none of the scholars contrasted their suggested technique with a fog-
based architecture. As a result, developing a fog-based strategy that is more effective
than previous fog-based solutions is desirable. Because latency, energy consumption, and
network usage are all significant characteristics for health monitoring systems, most studies
simply compared their proposed approach to latency and network utilization. Energy
consumption, however, was not regarded as a performance indicator. As a result, in
addition to delay and network utilization, we must compare our suggested strategy in
terms of energy consumption.

In the proposed algorithm, the tasks are classified according to the patient’s condition
into normal, moderate, and critical. Then, critical tasks are given high priority, moderate
tasks are given medium priority, and normal tasks are given low priority so that each
classified task is placed in its own queue using the Earliest Deadline First (EDF) algorithm.
After that, the appropriate fog node is carefully selected to execute the task by giving each
fog node a special weight based on the expected amount of energy consumed and latency
in executing this task and choosing the lowest weight.
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3. Research Methodology

This part presents the methodology of the EEIoMT framework. Figure 1 depicts the
research methodology flowchart. In order to develop a solution, we first looked at previous
studies to determine the most pressing issue and the elements that influence it. The second
step was to determine the goals. The proposed framework’s design and development was
the third step. The role of each algorithm in the framework to tackle the problem was
identified during the demonstration process. The final step was to analyze the outcomes by
evaluating energy consumption, latency, and network usage with the iFogSim2 simulator.
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3.1. Proposed Framework Architecture

The proposed architecture assumes that a group of patients is being monitored in
a smart city for emergency situations such as arrhythmia. Cardiovascular disorders are
well-known to be among the top main causes of death in the world today. Cardiologists
utilize the ECG sensor as one of the tools to diagnose and identify indicators of heart
disease in their patients because preserving patients’ lives from a sudden heart attack
or cardiac arrest necessitates quick and correct interpretation and decisions. As a result,
patients’ current conditions, emergency situations, and decisions are addressed to the best
of their abilities. Two important and fundamental design factors related to the scope of
this research must be considered: First, the healthcare system must operate 24/7 without
downtime. Thus, the caregiver can always monitor the condition of the patients. Second,
the information must always be up to date. If the information is not up to date, the missing
factors could cost human lives. Furthermore, in comparison to static techniques in the
literature, our system allows for real-time dynamic allocation of health duties across fog
and cloud devices based on the algorithms employed.

The architecture is made up of three layers: a bottom layer (IoT and edge equipment),
an intermediate computing layer (fog devices), and a top layer (cloud). The IoT device
is the lowest layer, and it comprises all of the connected devices that are involved in the
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sensing and actuation processes. For time-sensitive task applications, task achievement
should be performed by the appropriate compute node. Because no standard architecture
is available at this time, one of the current designs must be chosen and modified to make it
appropriate for the algorithm to be created. For this study, a three-tier architecture is used,
as presented in Figure 2. The update aims to reduce latency in real-time data transfer while
simultaneously improving QoS.
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The following are the detailed three-tier layer architectures.

• First tier (IoT devices and edge devices): The first layer is a collection of sensors,
actuators, and ESP32 microcontrollers. Actuators can be a smartphone or smartwatch.
In the proposed architecture, ECG sensors are used to evaluate heart health and send
the sensed data continuously to the ESP32 microcontroller through Bluetooth (BLE).
This microcontroller is responsible for: (1) data acquisition: it collects the ECG signals
from the ECG sensor; (2) data analysis: it analyzes the ECG signals and classifies the
patient condition into normal or abnormal in comparison with standard ECG intervals.
The microcontroller is connected to the fog scheduler through Wi-Fi. The smartphone
is used to receive a notification from the system or from the specialist doctor.

• Second tier (fog layer): This layer is set near the end gadgets. It consists of fog servers
and the fog scheduler. Fog devices include computation, communication, and storage
capabilities, as well as the ability to perform a variety of processing tasks. The fog
scheduler is linked to a network of IoT devices that typically spans a neighborhood or
a small town, and it performs task analysis in real time. Each fog device has an internal
database that is used to compute and store the tasks that have been assigned to it. In
addition to the internal databases, this layer maintains two global fog databases: (1) a
resource database, which reports on the capability for processing, usage, remaining
energy, and each processor device’s storage, and (2) a patient record database, which
stores patient health data and analysis results. The fog scheduler is in charge of
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accessing information from these databases, aiming to manage the scheduling of
those resources.

The fog scheduler includes the following modules: (1) The Task Collector Module
collects all tasks from the ESP32 microcontrollers that need to be processed. It also classifies
the tasks according to the proposed task classification algorithm. It creates a series of
structures that contain information and task characteristics. (2) The Task Prioritization
Module prioritizes the tasks based on the task priority algorithm. Critical tasks are given
high priority, moderate tasks are medium priority, and normal tasks are low priority. There
is a queue for each task classification; the tasks are arranged in each queue based on their
deadlines. As a result, critical activities will be completed sooner, thus helping to satisfy
the deadline and reaction time requirements. (3) The Resource Collector Module receives
information about the fog layer’s available resources. It keeps track of how often the
fog devices are used, as well as their updated capabilities (processor, RAM, energy, etc.).
(4) The Task Scheduling and Allocation Module is in charge of establishing and customizing
the task allocation method for fog and cloud devices. This module principally provides
a software routine for an optimization method aimed at lowering the system’s energy
consumption and decreasing the time that it takes to complete health tasks.

• The cloud, which gathers data and information from intermediary computing nodes,
is the third tier (cloud layer) of the architecture (fog layer). It uses cloud-based resource
devices to complete portions of jobs that are not completed in the fog layer, which
are typically non-time-sensitive. It also has a permanent database that caregivers can
use to keep track of the patient’s health analysis results. A proxy server establishes a
communication channel between a cloud server and fog nodes.

The suggested architecture has been utilized to enable rapid response, IoT healthcare,
and monitoring applications since these applications are latency-sensitive and require
real-time monitoring. In healthcare applications, information analysis and decision making
are critical. The most time-sensitive data (critical tasks) are processed in the appropriate fog
node in our architecture; this allows important jobs to be completed earlier, which helps in
meeting the deadline and response time requirements.

3.2. The Proposed Task Scheduling Algorithm

Various sensors and equipment provide huge amounts of data in real-time applications,
such as healthcare applications, which involve crucial tasks. Fog computing implementa-
tion can be used to manage them at the network’s edge. However, fog nodes lack resources,
which may limit the amount of time required for the ultimate outcome/analytics. Only a
few tasks can be performed by fog nodes. Choosing which tasks the fog nodes will perform
is a difficult decision.

To address various flaws in existing task scheduling algorithms, an Energy-Efficient
Internet of Medical Things to Fog Interoperability of Task Scheduling (EEIoMT) framework
is proposed. This framework has three algorithms: a task classification algorithm to classify
the tasks into three categories (normal tasks, moderate tasks, and critical tasks), a task
priority algorithm to give priority to each task according to each category from the previous
algorithm, and a dynamic task assignment algorithm to allocate tasks to the proper fog
node. The major function of algorithms in this framework is to assign tasks and prioritize
them, as well as to determine network resource availability. We place processing nodes
closer to sensors to reduce latency and energy consumption by minimizing the physical
distance between sensors and computing nodes. We also limit the energy in IoT devices
that can be consumed when transferring tasks to a far computing node. Each task should
be completed as quickly as possible to save the patient’s life, such as contacting the civil
defense and the hospital.



Sensors 2022, 22, 5327 9 of 36

3.2.1. Mathematical Model for Task Scheduling Algorithm

There are three layers of processing in the suggested framework: ESP32 microcon-
trollers, fog nodes, and the cloud. Fog servers, which are micro data centers and virtual
machines, are present in each node in the fog layers. Each layer’s server capacity is different.
Fog nodes have substantially less computational power, storage, and server capacity than
the fog cloud, and fog nodes also have significantly more computing power, storage, and
capacity than the ESP32 microcontroller. However, when it comes to delays, response time,
and distance from end users, the closer the computing nodes are to the data source, the
lower the delay and the higher the response speed. Therefore, critical and time-sensitive
tasks must be executed at the appropriate computational node to ensure that they are
executed with minimal delay and meet their deadlines.

In fog computing, the task scheduling challenge is to allocate IoT tasks to suitable fog
nodes from a list of potential fog nodes in order to optimize QoS. In this research, latency,
energy consumption, and network usage are considered QoS parameters.

Assuming that there are n tasks T to be delivered to the fog scheduler, the following
can be expressed:

T = {t1, t2, . . . , tn} (1)

in which each parameter ti is characterized using a set of attributes ti = {TSi, TLi, typei, dti},
where TSi is task size (in bits), TLi is task length (in MI (Millions of Instructions)), the typei
of the task is normal, moderate, or critical, and dti is the deadline of the task to be respected
for achieving the task.

Assume that the fog computing system has m Fog nodes F, which may be expressed
as follows:

F = { f1, f2, . . . , fm} (2)

in which each parameter f j is described using a set of attributes f j =
{

Sj, CCj, Ej
}

, where
Sj refers to storage capacity, CCj is computing capacity (in MIPS (Millions of Instructions
Per Second)), and Ej is the total battery capacity (Energy) of f j.

The task scheduling challenge is to allocate n tasks to m fog nodes in such a way that
the QoS parameters are optimal using the notations above. Xij refers to the assignment of
task ti to fog node f j, whereas Xicloud refers to the assignment of task ti to the cloud.

We can analytically analyze the execution time, transmission time, response time, and
energy use to distribute the requested tasks to the appropriate fog node. After that, the
relevant node is chosen, and the task is assigned to it.

• Execution time

The execution time of processing task ti on fog node f j or the cloud is calculated
according to Equations (3) and (4):

Et
(
Xij
)
=

TLi
CCj

(3)

Et(Xicloud) =
TLi

CCcloud
(4)

where Et
(
Xij
)
, and Et(Xicloud) are the execution time of the task in the fog node and

cloud, respectively, and CCj, and CCcloud are the computation capacity of the fog node, and
cloud, respectively.

• Transmission time

The transmission time of task ti from the ESP32 to the fog scheduler Trt(FS) is calcu-
lated by the task size TSi of task ti divided by the transmission rate (bandwidth) BW.

Trt(FS) =
TSi
BW

(5)
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The transmission time of task ti from the fog scheduler to the fog node Trt
(
Xij
)

or to
the cloud Trt(Xicloud) is calculated as follows:

Trt
(
Xij
)
=

TSi send + TSi response
BW

(6)

Trt(Xicloud) =
TSi send + TSi response

BW
(7)

The total transmission time of tasks from the ESP32 to the appropriate fog node f j or
the cloud can be calculated by combining Equations (5) and (6) or (5) and (7), respectively.

Trttotal
(
Xij
)
= Trt(FS) + Trt

(
Xij
)

(8)

Trttotal(Xicloud) = Trt(FS) + Trt(Xicloud) (9)

• Response time

The response time of a task ti that is handled in many layers is the sum of the specified
node’s execution time plus the task’s transmission time from the source to the destination.
The next formula is utilized to compute the response time of task ti that is handled at fog
node f j:

RT
(
Xij
)
= Et

(
Xij
)
+ Trttotal

(
Xij
)

(10)

The response time of task ti that is processed in the cloud is calculated as follows:

RT(Xicloud) = Et(Xicloud) + Trttotal(Xicloud) (11)

• Energy consumption

Energy consumption in our work is composed of two components: the energy spent
on transmitting a task to a computing node and the energy spent on executing the task.

The energy Etr
(
Xij
)

required to transmit task ti to fog node f j is calculated by multi-
plying the transmission time by a constant coefficient as follows:

Etr
(
Xij
)
= λ ∗ Trttotal

(
Xij
)

(12)

However, when calculated, the energy required to transmit task ti to the cloud is
calculated as follows:

Etr(Xicloud) = λ ∗ Trttotal(Xicloud) (13)

where λ is a constant related to the wireless interface [32]. The energy consumption Ep
(
Xij
)

for processing task ti on fog node f j is expressed by multiplying the execution time by a
constant coefficient as follows:

Ep
(
Xij
)
= µ ∗ Et

(
Xij
)

(14)

The energy consumption Ep(Xicloud) for processing task ti in the cloud is as follows:

Ep(Xicloud) = µ ∗ Et(Xicloud) (15)

where µ is the coefficient denoting the energy consumption per CPU cycle [33].
The total energy is calculated by a combination of processing energy and transmission

energy for the fog or cloud, as follows:

Etotal
(
Xij
)
= Etr

(
Xij
)
+ Ep

(
Xij
)

(16)

Etotal(Xicloud) = Etr(Xicloud) + Ep(Xicloud) (17)

• Makespan
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The makespan is the maximum completion time (CT) of a resource. It is denoted as
follows, according to the equation in [34]:

Makespan = MAX

(
n

∑
i=1

CTi,j

)
(18)

• Resource Utilization

Resource Utilization (RU) refers to the most efficient use of resources. Reduced
makespan is critical to utilization performance. As a result, these two concepts are inversely
connected. The usage of Virtual Machines (VMs) is computed as follows:

RU =
CTi,j

Makespan
(19)

The total use of all assets present in the fog environment is defined as the average
utilization of the resource. The average resource consumption is computed as follows:

ARU =
n

∑
i=1

RU (20)

• Proposed formulation for task scheduling problem

The goal of scheduling is to distribute IoT tasks to the resources of fog nodes or the
cloud in the most efficient way possible to reduce latency and energy consumption. Integer
Linear Programming (ILP) [35] can be used to represent the issue of assigning IoT tasks to
suitable fog nodes, as follows:

m

∑
j=1

Xi,j = 1 ∀i ∈ {1, . . . , n}; (21)

n

∑
i=1

Xi,j × Ci ≤ CCj ∀j ∈ {1, . . . , m}; (22)

n

∑
i=1

Xi,j × TSi ≤ Sj ∀j ∈ {1, . . . , m}; (23)

n

∑
i=1

Xi,j × Ep
(
Xij
)
≤ Ej ∀j ∈ {1, . . . , m}; (24)

RT
(
Xij
)
≤ dti ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , m} (25)

Xij ∈ {0, 1} ∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , m} (26)

Equation (21) prevents a task from being assigned to more than one fog node at the
same time. Equation (22) shows that the computation intensity necessary to complete a set
of tasks assigned to the fog node cannot be greater than the computing capability of the fog
node. Equation (23) states that the task size necessary to complete a set of tasks given to
the fog node cannot exceed the fog node’s storage capacity. Equation (24) ensures that the
fog node’s energy consumption needed for completing a set of activities is less than the
fog node’s remaining battery capacity. Equation (25) ensures that the total time required
by fog node f j to complete task ti does not exceed the task deadline. Equation (26) defines
our binary decision variables, in which Xij is 1 if f j is selected for performing task ti and
0 otherwise.

The fog scheduler selects the correct fog node by assigning a weight to each node
so that the selection ensures that the optimization of QoS parameters is achieved. We
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modified the Weighted Sum Method (WSM) to be the dynamic Modified WSM (MWSM)
and compatible with our work.

NMWSM−score
ij = wE ∗ Etotal

(
Xij
)
+ wL ∗ RT

(
Xij
)

f or j = {1, 2, . . . , m} (27)

where NMWSM−score
ij indicates the QoS score of Xij (the weight assigned to fog node f j ).

The lower the NMWSM−score
ij , the more appropriate the fog node for executing task ti. The

QoS score given to Xij is calculated as the weighted sum of QoS parameters, total energy
consumption, and latency (expressed as response time). The summation of the weight
factors must be equal to 1, as shown below.

wE + wL = 1 (28)

where wE and wL are weight factors relating to the significant influence of the QoS parame-
ters energy consumption and latency in a given node, respectively.

Nomenclature contains a list of all of the notations used in the mathematical model.

3.2.2. ECG Signal Analysis

The diagnosis of cardiac problems known as arrhythmias, such as bradycardia, tachy-
cardia, and heart rate variation, is made easier with an ECG feature extraction algorithm.
The heart rate and arrhythmias are determined using beat detection, and abnormal beats
are detected using additional processing. The acquired ECG signal can be segmented into
the P wave, T wave, and QRS complex. Different time intervals, such as PR, QRS, QT, and
ST, are obtained, as shown in Figure 3.

The ECG signals are analyzed every 8 s [36] and classify the patient’s state into normal
or abnormal in comparison with the typical values of waves and intervals of ECG signals,
which are shown in Table 1. If the result of analyzing the ECG signals is within the
permissible duration for each wave or interval, the patient’s condition is considered normal.
However, if there is any difference, whether an increase or decrease in the periods, the
patient has an abnormal condition and must be monitored.
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In our work, the Novel Windowing Algorithm [38] was used to analyze ECG signals
in the ESP32 microcontroller.



Sensors 2022, 22, 5327 13 of 36

Table 1. Normal values of waves and intervals of ECG signal [39].

Feature Amplitude (Millivolts) Duration (Milliseconds)

P wave 0.1–0.2 60–80
PR interval 120–200
PR segment 50–120
RR interval 600–1200
QRS complex 1 80–120
ST segment 100–120
ST interval 320
QT interval 400–430
T wave 0.1–0.3 120–160
TP segment 380–400
Heart rate per minute 60–100 bmp

3.2.3. Task Classification Algorithm

We classified IoT tasks into three types: normal tasks, moderate tasks, and critical
tasks according to the patient’s condition.

• Normal tasks

If the condition of the patient is normal, the tasks are considered normal tasks. The
data will be aggregated in ESP32, and the analysis will be performed every 24 s, for example,
instead of 8 s, aiming to decrease energy usage during the analysis. In the given period of
time, the patient’s health data will be delivered to the patient record database in the fog
layer to update and store their data.

• Moderate tasks

If the patient’s condition is abnormal and the patient has no history of heart attacks,
the tasks are considered moderate tasks. These tasks are delivered to the fog scheduler to
be treated in the appropriate fog node.

• Critical tasks

If the patient’s condition is abnormal and the patient has a history of heart attacks,
the tasks are considered critical tasks. These tasks must be processed in the appropriate
available fog node because they are time-sensitive, and delays in response may put the
patient’s life at risk.

3.2.4. Task Priority Algorithm

To assign tasks to the correct fog node and ensure that tasks are executed by their
deadline, tasks must be scheduled according to their priority. In the priority algorithm,
critical tasks are given high priority and should be treated in the appropriate fog node.
Although moderate tasks have a medium priority, when the deadline for these tasks
approaches, moderate tasks will be changed to critical tasks, and they will be given a high
priority. Normal tasks are not time-sensitive tasks, so these tasks have low priority.

3.2.5. Dynamic Task Assignment Algorithm

After categorizing the tasks and giving each of them a priority, it is necessary to select
the correct fog node for processing. When selecting a fog node, we make sure that the
QoS is optimized in terms of lag and energy consumption. A dynamic task assignment
algorithm is proposed to assign tasks dynamically to the correct fog node according to the
task priority, the weight of the fog node, and resource availability.

The Weighted Sum Method (WSM) [40] is a multi-criterion decision-making method
that takes into account a list of criteria, such as current battery state, energy consumption,
latency, response time, and load, among others. The WSM is the best-known and most
widely used method for making decisions with multiple criteria. The method is clearly
explained in [41]. We can make a decision using this technique based on a lot more useful
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data on the effectiveness of any node. Each node has a different weight, which allows it to
stand out from the others. The WSM is time-independent and can be described as a static
WSM. Therefore, we modified this method to be a dynamic MWSM and compatible with
our work.

The MWSM is implemented to select the appropriate node in terms of latency and
energy consumption according to Equation (27) in the mathematical model.

If the task is critical, the weight factors are wE = 0; wL = 1. This type of task is time-
sensitive, so the task should be executed with the least possible latency because any further
delay will put the patient’s life at risk. When the task is moderate, the weight f actors
wE = 0.5; wL = 0.5 are used. In order to conserve energy and, at the same time, take care
of the delay, we set an equal weight factor between them while ensuring the execution of
these tasks within their deadlines. However, in the case of normal tasks, the weight f actors
wE = 1; wL = 0 are used. These tasks are not time-sensitive, and therefore, we do not
consider the latency and focus on energy while ensuring the execution of these tasks within
their deadlines.

The tasks will be routed to the cloud if resources are not accessible in the fog layer.

3.2.6. Task Scheduling Algorithm Design

Tasks are categorized into three types: normal tasks, moderate tasks, and critical
tasks according to the patient’s condition in comparison with standard ECG intervals. All
important tasks will be placed into a high-priority queue, while moderate tasks will be
added to a separate queue, ensuring that all high-priority tasks are handled first. The
suggested method executes a task categorization procedure depending on the patient’s
status whenever a task comes from an edge device. Then, it puts the task into the appro-
priate queue according to its priority. After that, the dynamic task assignment algorithm
assigns the task to the suitable layer. The Pseudo-Code of the proposed EEIoMT framework
algorithm is shown in Algorithm 1.

Algorithm 1. Proposed EEIoMT Framework Algorithm

Input: Tasks with patient’s condition attribute (Normal or Abnormal)
History of heart attacks attribute (Yes, No)
Number of tasks (T), Number of Fog nodes (F), Cloud
Output:
Optimize Energy Consumption and Latency
Begin:
1. Incoming tasks T
2. Foreach task ti ∈ T
3. Call Task Classification Algorithm;
4. Call Task Priority Algorithm;
5. Call Dynamic Task Assignment Algorithm;
6. End

Therefore, a task classification algorithm was designed, as shown in Algorithm 2.

• Task priority algorithm

In the task priority algorithm, critical tasks are given high priority, moderate tasks
are medium priority, and normal tasks are low priority. There are three queues for each
task classification, and the tasks are arranged in each queue based on their deadlines. The
EDF method is used to order the list of tasks by deadline. The assignment with the shortest
deadline is completed first. When two jobs have the same deadline, the task is ordered by
FCFS. Critical activities will be completed sooner as a result, helping to satisfy the deadline
and reaction time requirements. The Pseudo-Code of the task priority algorithm is shown
in Algorithm 3.
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Algorithm 2. Task Classification Algorithm

Input: Tasks with patient’s condition attribute (Normal or Abnormal)
History of heart attacks attribute (Yes, No)

Output: Task Categorization (Normal, Moderate, or Critical)
Begin:
1. Incoming tasks T
2. Foreach task ti ∈ T do
3. If (patient condition is Normal)
4. Categorize task t_i as Normal task
5. If (patient condition is Abnormal)
6. Elseif (heart attacks = yes)
7. Categorize task t_i as Critical task
8. Else
9. Categorize task t_i as Moderate task
10. End
11. End
12. End

Algorithm 3. Task Priority Algorithm

Input: Task Categorization (Normal, Moderate, or Critical)
Number of tasks T
Output: critical_tasks [ti, T]; moderate_tasks [ti, T]; normal_tasks [ti, T];
Begin:
1. critical_tasks [ti, T] = null;
2. moderate_tasks [ti, T] = null;
3. normal_tasks [ti, T] = null;
4. Foreach ti ∈ T do
5. If (task is normal)
6. added to normal_tasks [ti, T];
7. Else if (task is moderate)
8. added to moderate_tasks [ti, T]
9. Else
10. added to critical_tasks [ti, T]
11. End
12. End
13. End

• Dynamic task assignment algorithm

The Pseudo-Code of the dynamic task assignment algorithm is shown in Algorithm 4.

Algorithm 4. Dynamic Task Assignment Algorithm

Input: critical_tasks [ti, T]; moderate_tasks [ti, T]; normal_tasks [ti, T];
Number of fog node F, cloud
Output: Task to be assigned in fog layer or cloud
Begin:
1. Foreach ti ∈ critical_tasks [ti, T]) do
2. Find the available fog nodes in the system;

3. Calculate Et
(

Xij

)
based on Equation (3);

4. Calculate Trttotal

(
Xij

)
based on Equation (8);

5. Calculate RT
(

Xij

)
based on Equation (10);

6. Calculate Etotal

(
Xij

)
based on Equation (16);

7. wE = 0;
8. wL = 1;
9. Calculate the weight for all available fog node based on Equation (27);
10. QF ← Sort all available fog nodes by their weights with ascending order;
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Algorithm 4. Cont.

11. Foreach f j ∈ QF do

12. If RT
(

Xij

)
≤ dti

13. If Ep

(
Xij

)
≤ Ej && TSi ≤ Sj

14. Make the assignment based on Equations (21) and (26);
15. Xij = 1;

16. break;
17. Else
18. Continue;
19. End
20. End
21. End
22. If Xij = 0;//No available fog nodes in fog layer

23. Calculate Et(Xicloud) based on Equation (4);

24. Calculate Trttotal(Xicloud) based on Equation (9);

25. Calculate RT(Xicloud) based on Equation (11);

26. Calculate Etotal(Xicloud) based on Equation (17);

27. If RT
(

Xij

)
≤ dti

28. Make the assignment Xicloud = 1;
29. End
30. End
31. End
32. Foreach ti ∈ moderate_tasks [ti, T]) do

33. Find the available fog nodes in the system;

34. Calculate Et
(

Xij

)
based on Equation (3);

35. Calculate Trttotal

(
Xij

)
based on Equation (8);

36. Calculate RT
(

Xij

)
based on Equation (10);

37. Calculate Etotal

(
Xij

)
based on Equation (16);

38. wE = 0.5;
39. wL = 0.5;
40. Calculate the weights for all available fog node based on Equation (27);
41. QF ← Sort all available fog nodes by their weight with ascending order;

42. Foreach f j ∈ QF do

43. if RT
(

Xij

)
≤ dti

44. if Ep

(
Xij

)
≤ Ej && TSi ≤ Sj

45. Make the initial assignment based on Equations (21) and (26);
46. Xij = 1;
47. break;
48. Else
49. Continue;
50. End
51. End
52. End
53. if Xij = 0;//No available fog nodes in fog layer

54. Calculate Et(Xicloud) based on Equation (4);

55. Calculate Trttotal(Xicloud) based on Equation (9);

56. Calculate RT(Xicloud) based on Equation (11);



Sensors 2022, 22, 5327 17 of 36

Algorithm 4. Cont.

57. Calculate Etotal(Xicloud) based on Equation (17);

58. if RT
(

Xij

)
≤ dti

59. Make the assignment Xicloud = 1;
60. End
61. End
62. End
63. Foreach ti ∈ moderate_tasks [ti, T]) do
64. Find the available fog nodes in the system;

65. Calculate Et
(

Xij

)
based on Equation (3);

66. Calculate Trttotal

(
Xij

)
based on Equation (8);

67. Calculate RT
(

Xij

)
based on Equation (10);

68. Calculate Etotal

(
Xij

)
based on Equation (16);

69. wE = 1;
70. wL = 0;
71. Calculate the weight for all available fog node based on Equation (27);
72. QF ← Sort all available fog nodes by their weight with ascending order;
73. Foreach f j ∈ QF do

74. if RT
(

Xij

)
≤ dti

75. if Ep

(
Xij

)
≤ Ej && TSi ≤ Sj

76. Make the assignment based on Equations (21) and (26);
77. Xij = 1;
78. break;
79. Else
80. Continue;
81. End
82. End
83. End
84. if Xij = 0;//No available fog nodes in fog layer
85. Calculate Et(Xicloud) based on Equation (4);
86. Calculate Trttotal(Xicloud) based on Equation (9);
87. Calculate RT(Xicloud) based on Equation (11);
88. Calculate Etotal(Xicloud) based on Equation (17);

89. if RT
(

Xij

)
≤ dti

90. Make the assignment Xicloud = 1;
91. End
92. End
93. End

3.2.7. Scenario

Assume that a group of patients in a smart city is tracked in order to detect emergency
circumstances such as arrhythmia. Each patient has an ECG sensor attached to his/her
body that is connected to the ESP32 microcontroller. Assume that each group of ESP32 in a
specific geographical area is linked to the one fog scheduler by a Wi-Fi connection. Each
patient has a smartphone connected to the system, receiving important notifications from
the system or the specialist doctor. ECG signals are collected in the ESP32 and analyzed
periodically (every 8 s).

Case 1: If the outcome of the analysis shows that the patient’s condition is normal, the
information will be aggregated, and the analysis will be performed every 24 s, for example,
instead of 8 s, in order to limit the amount of energy used during the analysis. The patient’s
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health information and the results of the analysis will be delivered to the fog layer’s patient
record database, which will be updated and stored.

Case 2: If the patient’s condition is abnormal, the result is sent to the fog scheduler
through Wi-Fi. The proposed algorithm will first classify the tasks; if the patient has a
previous history of heart attacks, their condition will be considered critical. It will be given
high priority and executed at the appropriate fog node that fulfills the lowest possible
latency. A sound alert will be sent to the smartphone to notify the patient’s family of their
condition, and a notification will also be sent to the civil defense and the hospital.

Case 3: If the patient’s condition is abnormal and the patient has no history of heart
attacks, their condition will be considered moderate. It will be given medium priority and
executed at the available fog node. The patient’s data for the last 30 min will be sent to the
hospital for further analysis. The specialist doctor will send a set of instructions for the
patient to follow to avoid reaching a critical condition.

In all of the patient conditions, the patient’s health data will be delivered to the patient
record database in the fog layer to update and store the data.

3.2.8. Implementation

Using the Eclipse IDE environment (version 2021-03 (4.19.0), the suggested scheduling
technique was implemented in the iFogSim2 simulation toolbox. The simulation was run
on a real-world ECG dataset obtained from the University of California at Irvine’s Archive
database (UCI) [42], which was utilized for cardiac arrhythmias. This database contains
452 heart rate samples, 279 attributes, and 16 classes. Some of the most important attributes
are shown in Table 2. Table 3 shows the number and names of the classes, as well as the
quantity of information in every class. Class 1 denotes a normal ECG, whereas classes 2
through 15 denote various classes of arrhythmia (abnormal). The rest of the unclassified
ones are referred to as class 16.

Table 2. The UCI database attribute information [42].

Attribute Description

Age Age in years
Sex Sex (0 = male, 1 = female)
Height Height in centimeters (cm)
Weight Weight in kilograms (kg)
QRS duration Average QRS duration in milliseconds.
P-R interval Average time interval between the start of waves P and Q in milliseconds
Q-T interval Average time interval between the start of wave Q and end of wave T in milliseconds
T interval Average time interval of wave T in milliseconds
P interval Average P wave distance in milliseconds
Heart rate Number of heart beats per minute

In a 3000 × 2000 m area, six fog nodes were constructed and randomly placed. Every
fog node had four connected IoT devices at first, with a coverage area of 500 m.

For the real-time implementation of our proposed framework, the configuration
characteristics required for the cloud, proxy server, fog server, fog scheduler, and IoT
devices are presented in Table 4.

The values of parameters used in the proposed EEIoMT framework are listed in
Table 5.
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Table 3. The UCI database arrhythmia classes [43].

Number of Class Name of Class Amount of Data in Class

1 Normal 245
2 Ischemic changes (coronary artery diseases) 44
3 Old anterior myocardial infarction 15
4 Old inferior myocardial infarction 15
5 Sinus tachycardia 13
6 Sinus bradycardia 25
7 Ventricular premature contraction 3
8 Supraventricular premature contraction 2
9 Left bundle branch block 9
10 Right bundle branch block 50
11 Degree atrioventricular block 0
12 Degree AV block 0
13 Degree AV block 0
14 Left ventricular hypertrophy 4
15 Atrial fibrillation or flutter 5
16 Others 22

Table 4. Value of parameters used for cloud- and fog-based implementations [24].

Parameter Name and Unit Cloud Proxy Fog
Server

Fog
Scheduler IoT Device

CPU length (MIPS) 44,800 2800 2800 2800 500
Random access memory (MB) 40,000 4000 4000 4000 2048

Uplink bandwidth (MB) 100 10,000 10,000 10,000 10,000
Downlink bandwidth (MB) 10,000 10,000 10,000 10,000 270

Level 0 1 2 2 3
Rate per MIPS 0.01 0.0 0.0 0.0 0.0

Busy power (Watt) 16 × 103 107.339 107.339 107.339 87.53
Idle power (Watt) 16 × 83.25 83.4333 83.4333 83.4333 82.44

Table 5. Value of parameters used in proposed EEIoMT framework.

Parameter Value

Network size 3000 × 2000 m
Number of fog nodes 6

Number of VMs 3
Number of tasks for each patient 3

Number of patients 24
Network length (bytes) 22,000

λ 1224.78 mJ/s
µ 3.7 (watt)

4. Experimental Results and Discussion

In this part, the most important outcomes of the research are explained, discussed,
and analyzed. Healthcare applications are time-sensitive and require real-time processing
to monitor patients, and this is supported by the proposed framework. It also optimizes
the QoS for home health monitoring systems by fog computing in terms of energy usage,
latency, and network utilization. Since this system relates to human life, a delay in re-
sponding to critical tasks must have the lowest value, and this is what is provided in our
proposed framework. Furthermore, caregivers can always control a patient’s state in real
time and make the appropriate decision to save their life.

In this research, the simulation was run on a laptop with 8 GB of RAM, a 3.2 GHz Core
i7 processor, 10th GEN DELL, a 500 GB HDD, 250 GB SSD, Windows 10 Pro, and a 64-bit
operating system.
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4.1. Experimental Results

The behavior evaluation of the suggested EEIoMT framework was performed against
CHTM [31], LBS [29], and FNPA [30], which are high-level models, and outcomes are shown
in this part. The following performance metrics are used in the performance evaluation:

1. Average energy consumption: This is the overall energy utilized by the entire system.
It is measured by the amount of energy consumed while tasks are being transmitted
and processed through any of the system elements, such as IoT devices, fog nodes,
and the cloud. The energy consumption needs to be minimized. It is measured
in joules.

2. Average latency: This is the time that it takes for the system to complete all of its tasks.
In our system, the response time is adopted as the main criterion for lag, which is the
total time required to transfer and perform tasks and return the results. As a result,
when the reaction time is lowered, the latency is reduced as well. The latency needs
to be minimized. It is measured in milliseconds (ms).

3. Network usage: In our research, the amount of data transferred and received by a
certain user within a network in a given amount of time is referred to as bandwidth
use. The more data exchanged, the greater the risk of clogging the network, and
the more energy consumed by a single user. Typically, bandwidth is measured in
bits per second and expressed as a bit rate (bps). In other words, it demonstrates
how the proposed framework contributes to balancing network load while executing
tasks. The network usage needs to be minimized. It is measured in kilobits per
second (kbps).

4. CPU usage: The amount of work handled by a CPU or the number of processing
resources used by a computer is referred to as “CPU use.” The volume and type
of managed computing tasks determine how much CPU is used. Due to non-CPU
resource needs, certain operations demand a lot of CPU time, while others require a
lot less.

In the first experimental test, the number of fog nodes was set to 6, the number of
VMs was 3, the number of patients was 24, and the number of tasks for each patient was 3.
The results are the average of the 1000-time test. The outcomes for the behavior metrics of
average latency, average energy consumption, network usage, and CPU usage are shown
in Figures 4–7, respectively.
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The simulation results show that EEIoMT significantly reduces all of the performance
metrics as compared to the CHTM, LBS, and FNPA models. This is due to the design of
this framework, where the ECG sensor signals are analyzed near the sensor inside the
ESP32 microcontroller; thus, the distance over which the signals are transmitted is greatly
reduced, and therefore, the transmission time will be significantly reduced. If the result of
the analysis indicates that the patient’s condition is normal, the data are aggregated and not
sent directly to the fog layer, where in every given period of time, a report is sent with the
patient’s data to be stored, and the previous data are updated in the fog layer and then sent
to the cloud. However, if the patient’s condition is abnormal, the task with the abnormal
condition will be sent to the fog layer, thus reducing the amount and size of data transmitted
to the fog layer, which in turn reduces the latency, the amount of energy consumed during
the transmission and processing of these tasks, and the amount of bandwidth consumed
during the transmission of these tasks. Fog nodes are also used efficiently, and the load
is distributed among them, which reduces the latency, energy consumption, and network
usage that would result from giving one of the nodes a heavy burden and leaving the
other idle. In the proposed framework, three algorithms are designed to improve the
task execution process and reduce response time and energy consumption. The tasks are
classified into normal, moderate, and critical tasks, and then each of them is given priority
so that we ensure the execution of critical tasks in the least time and ensure that all other
tasks are executed within their deadlines. The appropriate fog node is carefully selected to
carry out the task by giving special weight to each node. In the case of critical tasks, the
latency is given full importance, and thus, the fog node that achieves the least latency is
chosen even if there is higher energy consumption. In the case of a moderate task, equal
importance is given to energy consumption and latency, while when the task is normal,
full importance is given to energy consumption while ensuring that tasks are executed
within their deadline. In this way, the appropriate fog node is selected that achieves the
best results depending on the type of task to be executed. In contrast, in the CHTM, LBS,
and FNPA models, the sensor signals are sent to the fog layer, and thus, more time, energy,
and bandwidth are consumed when transmitting and also when processing them in the
fog nodes because the data size is much larger than the data that are transferred and
processed through the proposed framework. Additionally, because the size of the tasks to
be processed in our framework is small, they do not require high CPU usage.

It can be noticed that the proposed EEIoMT framework achieves the least latency,
energy consumption, network usage, and CPU usage.

In the following experiments, the results were obtained by changing one parameter
each time. These parameters are the number of patients, the number of fog nodes, the
number of Virtual Machines (VMs), the number of tasks, and the percentage of the type of
each task. All of the results are the average of the 1000-time test.

4.1.1. Changing the Number of Patients

In this part of the experimental test, the number of fog nodes was set to 6, the number
of VMs was 3, and the number of tasks for each patient was 3. As each patient has a
fixed number of tasks, when the number of patients increases, the tasks will increase by a
constant number of tasks for each patient, as shown in Table 6. The number of patients was
changed to 36, 48, 60, and 72.

Table 6. Number of tasks when increasing the number of patients.

Number of Patients Number of Tasks Number of Tasks for Each Patient

36 108 3
48 144 3
60 180 3
72 216 3
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When the number of patients increases, the IoT devices connected to the fog layer
will increase, and therefore, the tasks that are sent to the fog layer will increase. These
tasks require more time and energy to transmit and process, and this increases latency and
energy consumption. These tasks also consume more network bandwidth and CPU usage.

When the number of patients grows and there are not enough fog nodes with sufficient
resources, the tasks are forwarded to the cloud. As a result of the increasing load on the
cloud server, latency and network utilization increase.

Figures 8–11 illustrate the findings for the performance parameters of latency, energy
consumption, network utilization, and CPU usage, respectively.
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To allocate workload, FNPA chooses the fog node with the shortest distance and
most resources (bandwidth, RAM, and CPU). When the number of users grows to the
point where no more fog nodes with sufficient capacity are available, the tasks are routed
to the cloud server. As a result of the increasing demand on the cloud server, latency
increases. Likewise, each IoT device has only one fog node or BS in LBS, although it might
be located in the coverage region of many BSs. In an effort to decrease latency, the IoT device
chooses an appropriate fog node. The message is transmitted to IoT devices after each BS’s
traffic and computing loads are iteratively calculated. The fog node’s communication and
computation latency will be determined after the BS and fog nodes’ traffic and computing
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loads have been estimated, respectively. Each IoT device will verify the parameters before
selecting the best BS in each iteration with the least amount of latency. When the number
of IoT devices rises while the number of BSs remains the same, it is possible for many IoT
devices to choose the same BS that achieves the least latency at the same time, and therefore,
it receives an overload, and the latency will increase. Moreover, the selection of the suitable
BS by IoT devices is inefficient, as there must be a scheduler for controlling these devices
and selecting the most appropriate BS for them.

Prioritization is performed by Personal Agents (PAs) in the CHTM model before
arrival tasks are designated to fog nodes. Then, in the fog nodes, utilizing Fog Node Agents
(FNAs), all of the associated PAs are prioritized. The task scheduling module will decide
whether to deal with incoming duties locally (if the task’s size is within the local node’s
resources) or to send them to neighboring nodes (in case of the unattainability of local node
resources). This module, in other words, provides three major options: executing locally, in
a neighbor, or in the cloud.

4.1.2. Changing the Number of Fog Nodes

In this part of the experimental test, the number of fog nodes was set to 24, the number
of VMs was 3, and the number of tasks for each patient was 3. The number of fog nodes
was changed to 8, 10, 12, and 14.

The simulation outcome indicates that as the number of fog nodes accumulates, latency,
energy consumption, and network usage in all models decrease in varying proportions
because when the number of fog nodes increases, there will be more options from which to
choose the most suitable nodes to perform the tasks, and the possibility of sending tasks to
the cloud will also be reduced, thus reducing latency and consuming less energy and less
network bandwidth. There will also be more calculations for choosing the most suitable
nodes to perform the tasks, and the execution of tasks will be distributed among these fog
nodes, thus slightly decreasing CPU usage.

The outcomes for the behavior metrics of latency, energy consumption, network usage,
and CPU usage are shown in Figures 12–15, respectively.
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4.1.3. Changing the Number of Virtual Machines

In this part of the experimental test, the number of fog nodes was set to 6, the number
of patients was 24, and the number of tasks for each patient was 3. Then, the number of
VMs was changed to 5, 7, 9, and 11.

When the number of VMs increases, most of the tasks will be executed in the fog
layer, so the latency and the network usage will decrease, but the energy consumption will
increase due to executing more tasks earlier, which requires more energy. The execution
of tasks will also be distributed among these VMs, and thus, the CPU usage will decrease.
Figures 16–19 illustrate the findings for the performance measures of latency, energy
consumption, network utilization, and CPU usage, respectively.
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4.1.4. Changing the Number of Tasks

In this part of the experimental test, the number of fog nodes was set to 6, the number
of VMs was 3, and the number of patients was 24. Then, the number of tasks was changed
to 120, 168, 216, and 264.

When the number of tasks rises, there is a rise in time and energy consumption to
transmit and process these tasks. These tasks also need more processing in the CPU, so the
CPU usage increases. Furthermore, these tasks consume more network bandwidth, so the
network usage increases.

The outcomes are presented in Figures 20–23, which show performance metrics for
latency, energy consumption, network usage, and CPU usage, respectively.
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4.1.5. Changing the Percentage of Each Type of Task

In this part of the experimental test, the number of fog nodes was set to 6, the number
of VMs was 3, the number of patients was 24, and the number of tasks for each patient was
11. Then, the types of tasks were determined, namely, critical, moderate, or normal, and
each type was given a certain percentage of the total number of tasks. The percentage of
each type was changed to (70% normal, 20% moderate, 10% critical), (50% normal, 35%
moderate, 15% critical), (30% normal, 40% moderate, 30% critical), and (10% normal, 50%
moderate, and 40% critical).

The simulation results demonstrate that in our proposed EEIoMT, when the number
of critical tasks increases, the energy consumption, network usage, and CPU usage are
increased, but the latency is decreased because we are focused on minimizing latency. In
this case, the fog nodes that achieve the least latency are selected, and when executing
these tasks within the fog layer, the CPU usage and the bandwidth consumption will
also increase.

It can be seen that in the proposed EEIoMT, when the percentage of normal tasks is
70%, the energy consumption is as low as possible because we are focused on minimizing
energy while meeting their deadlines. In the other models, slight changes are observed
in energy consumption, latency, network usage, and CPU usage because their tasks are
not categorized and given priorities, as is implemented in our proposed framework, and
therefore, changing the percentages of these tasks will not greatly change the values of any
of the performance metrics in other models.

The results for the performance metrics of latency, energy consumption, network
usage, and CPU usage are shown in Figures 24–27, respectively.

In summary, the energy consumption in our work is composed of two portions: the
amount of energy expended in completing a task to a computing node and the energy spent
on executing the task. In time-sensitive applications such as health monitoring systems,
latency must also be decreased. It can be observed that in the proposed EEIoMT, the latency
increases and decreases depending on the type of task being performed. If most of them
are critical tasks, the latency decreases, and if they are moderate or normal, the latency
will be a little high. Furthermore, because only the cloud server is in charge of all data
processing, using the cloud-only implementation of the architecture results in high network
usage due to the expanded load of traffic on the cloud server. In contrast, in fog-based
architectures such as EEIoMT, CHTM, LBS, and FNPA, every fog node is expected to handle
and evaluate information streams acquired from its linked IoT devices, resulting in lower
network use. Despite the scarce number of resources available at fog nodes, the burden
is distributed among all fog nodes, resulting in decreased bandwidth usage. As a result,
fog-based computing could be a great way to meet the QoS demands of real-time systems
such as health monitoring. It is clear that the novel low-latency and energy-efficient task
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scheduling framework for the Internet of Medical Things in an edge–fog–cloud system can
be used for many applications such as Vital Sign Monitoring [44], Smart-Contract-Aware
Ethereum [45], hospitals and medical enterprises [46], Accelerating Edge Intelligence using
Integrated Sensing [47], and a POMDP approach for age-of-information-based scheduling
in multiuser uplinks with stochastic arrivals [48].
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Regarding latency, energy consumption, and network usage, the suggested EEIoMT
framework outperformed CHTM, LBS, and FNPA. The proposed fog-based health monitor-
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ing system will be able to process a high number of patient requests in a timely manner
thanks to the proposed EEIoMT, which will assist patients, healthcare workers, and medical
caregivers. People will be able to check their health condition at home and only need to see
their doctor if their health status is critical, reducing the strain on clinics and hospitals.

5. Conclusions and Future Work

In recent years, the health field has received great attention due to the spread of the
Coronavirus, which in turn has placed great pressure on hospitals and medical staff. Thus,
the role and importance of healthcare applications in remote monitoring have greatly
increased. In order to protect the elderly from this virus without direct interaction with
medical staff who could transmit this virus to them, they can be monitored with the help
of remote monitoring systems to prevent permanent stays in the hospital for monitoring.
Therefore, the number of gadgets employed in these applications will rise, generating
huge amounts of data. Using the cloud only causes delays while transferring information
from sensors to the cloud and from the cloud to hospitals or caregivers. Fog computing,
which sits between end-users (IoT devices) and cloud computing, was suggested by Cisco
in 2012. Fog computing is not a replacement for cloud computing; rather, it mitigates
cloud computing’s drawbacks and improves its efficiency. At the network’s edge, it also
delivers storage and computational functions. Although fog computing is utilized in
real-time healthcare applications, there are still limitations on response time, latency, and
energy consumption. Although some researchers have proposed scheduling algorithms
to overcome these limitations in a fog computing environment, there is still a gap in task
scheduling regarding the time response and the amount of energy consumed. Most of
the algorithms assign all incoming tasks coming from IoT devices to the nearest fog node
without giving them priorities and without regard for the load on the fog nodes.

This research mitigated these limitations by proposing an EEIoMT framework. This
framework consists of three algorithms for efficient task scheduling to ensure that critical
tasks are executed in the shortest possible time within the deadline while balancing energy
consumption when processing other tasks. In our architecture, ECG sensors are used to
monitor heart health at home in a smart city. The ECG sensors continuously send the sensed
data to the ESP32 through BLE. The ECG signals are analyzed in the ESP32 microcontroller,
which is also connected to the fog scheduler via Wi-Fi connection to send the analysis
results data (tasks). The appropriate fog node is carefully selected to perform the task by
giving each node a special weight based on the expected amount of energy consumed and
latency in performing the task and choosing the node with the lowest weight.

The proposed algorithm was assessed utilizing the iFogSim2 simulator. The simulation
outcomes show that our framework, in comparison with the CHTM model, decreases the
latency by 59%, energy consumption by 61%, and network usage by 57%. When compared
with LBS, it reduces the latency by 60%, the consumption of energy by 62%, and the
network usage by 64%. In comparison with FNPA, it reduces the latency by 62%, energy
consumption by 63%, and network usage by 65%. The results indicate that the suggested
framework has superior performance in decreasing energy consumption, latency, and
network usage when contrasted to CHTM, LBS, and FNPA.

In the future, an enhancement to the framework is needed in order to process more
types of vital signs simultaneously. In addition, the proposed framework will be applied
in other real-time applications in addition to healthcare applications. Furthermore, the
suggested algorithm needs to be tested on larger and more diverse data with real equipment
if possible.
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Nomenclature

T Set of tasks
n Number of tasks
ti Task i ∈ T
TSi Task size of task ti
TLi Task length of task ti
typei The type of task ti, which is normal, moderate, or critical
dti The deadline of task ti to be respected for completing the task
F Set of fog nodes
m Number of fog nodes in the system
f j Fog node j ∈ F
Sj Storage capacity of fog node f j
CCj Computing capacity of fog node f j
Ej Total battery capacity of Fog node f j
Xij A binary variable determining whether ti is assigned to f j or not
Xicloud A binary variable determining whether ti is assigned to the cloud or not

Et
(

Xij

)
Execution time of processing task ti on fog node f j

Et(Xicloud) Execution time of processing task ti in the cloud
CCcloud Computing capacity of the cloud
Trt(FS) The transmission time of task ti to the fog schedule
BW The transmission rate of the task to be sent from one node to the other

Trt
(

Xij

)
The transmission time of task ti from the fog scheduler to fog node f j

Trt(Xicloud) The transmission time of task ti from the fog scheduler to the cloud
Trttotal

(
Xij

)
The total transmission time of tasks from the ESP32 or smartphone to fog node f j

Trttotal(Xicloud) The total transmission time of tasks from the ESP32 or smartphone to the cloud
RT
(

Xij

)
The response time of tasks ti that are processed in fog node f j

RT(Xicloud) The response time of tasks ti that are processed in the cloud
Etr

(
Xij

)
The energy required to transmit task ti to fog node f j

Etr(Xicloud) The energy required to transmit task ti to the cloud
λ Constant related to the wireless interface

Ep

(
Xij

)
The energy consumption for processing task ti on fog node f j

Ep(Xicloud) The energy consumption for processing task ti in the cloud
µ The coefficient denoting the energy consumption per CPU cycle

Etotal

(
Xij

)
The total energy is calculated by a combination of processing energy and

transmission energy for fog
Etotal(Xicloud) The total energy is calculated by a combination of processing energy and

transmission energy for the cloud
Xassign The weight assigned to fog node f j
NWSM−score

ij The QoS score of Xij

wE The weight factors related to the energy consumption in a selected node
wL The weight factors related to the latency in a selected node
CT The completion time
RU Resource Utilization

http://archive.ics.uci.edu/mL/datasets/arrhythmia
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