338 research outputs found

    First Case Report of Primary Testicular Diffuse Large B-Cell Lymphoma from the Western Region of Saudi Arabia

    Get PDF
    Primary testicular lymphoma (PTL) represents 1-2% of all types of non-Hodgkin lymphomas (NHLs) and 1-10% of testicular neoplasms. Up to the best of my knowledge, this is the first case of PTL of the diffuse large B-cell lymphoma (DLBCL) in a 60-year-old man presented with a painless mass in the left testis as revealed by physical examination in a tertiary care hospital in Al-Madinah Al-Munwarah in the western region of the Kingdom of Saudi Arabia (KSA). Radiological examination revealed a large well-defined heterogeneous predominantly hypo-echoic mass with increased vascularity in the upper portion of the testis. On the other hand, histopathological examination revealed a tumor involving the whole left testis, which was large (measuring 6 3.5  3.3 cm), solid and dark red with focal areas of hemorrhage and epididymal infiltration. Immunohistochemistry showed positivity of leucocyte common antigen (LCA), pan B-cell marker (CD20) and negativity of pan T-cell marker (CD3). Other immunohistochemical markers such as CD10, placental alkaline phosphatase (PLAP), cytokeratin, vimentin, desmin and S100 protein were also negative. However, there was a marked expression of Ki67 and Bcl2 markers. Accordingly, the diagnosis of DLBCL was established. The tumor was classified as stage I according to the Ann Arbor system. The case was treated by orchiectomy followed by prophylactic anthracycline-based chemotherapy and irradiation of the contralateral testis and central nervous system

    Loxosceles gaucho Venom-Induced Acute Kidney Injury – In Vivo and In Vitro Studies

    Get PDF
    Loxosceles (recluse or brown spider) is the most important spider genus causing human envenomation. In Brazil Loxosceles spiders were responsible for approximately 7,000 cases of spider envenomation per year. The brown spider accidents may cause late cutaneous necrosis at the bite site, intravascular hemolysis, rhabdomyolysis, coagulation system changes and acute kidney injury (AKI). Even patients with mild cutaneous lesion may develop severe hemolysis and AKI, which is the main cause of death after these accidents. The mechanisms causing kidney injury are poorly understood. In this manuscript we described a consistent rodent model of Loxosceles gaucho venom-induced AKI and studied some of the possible mechanisms of the renal lesion. The results of this research showed that kidney injury may occur independently of the cutaneous lesion and without changes in the systemic blood pressure. Kidney dysfunction occurred likely due to intra-renal vasoconstriction and rhabdomyolysis, although a direct toxic effect of the venom on the proximal tubules cannot be ruled out

    Electrically Sorted Single-Walled Carbon Nanotubes-Based Electron Transporting Layers for Perovskite Solar Cells

    Get PDF
    © 2019 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Incorporation of as prepared single-walled carbon nanotubes (SWCNTs) into the electron transporting layer (ETL) is an effective strategy to enhance the photovoltaic performance of perovskite solar cells (PSCs). However, the fundamental role of the SWCNT electrical types in the PSCs is not well understood. Herein, we prepared semiconducting (s-) and metallic (m-) SWCNT families and integrated them into TiO2 photoelectrodes of the PSCs. Based on experimental and theoretical studies, we found that the electrical type of the nanotubes plays an important role in the devices. In particular, the mixture of s-SWCNTs and m-SWCNTs (2:1 w/w)-based PSCs exhibited a remarkable efficiency of up to 19.35%, which was significantly higher than that of the best control cell (17.04%). In this class of PSCs, semiconducting properties of s-SWCNTs play a critical role in extracting and transporting electrons, whereas m-SWCNTs provide high conductance throughout the electrode

    Long-Term Follow-Up of Patients after Acute Kidney Injury: Patterns of Renal Functional Recovery

    Get PDF
    Background and Objectives: Patients who survive acute kidney injury (AKI), especially those with partial renal recovery, present a higher long-term mortality risk. However, there is no consensus on the best time to assess renal function after an episode of acute kidney injury or agreement on the definition of renal recovery. In addition, only limited data regarding predictors of recovery are available. Design, Setting, Participants, & Measurements: From 1984 to 2009, 84 adult survivors of acute kidney injury were followed by the same nephrologist (RCRMA) for a median time of 4.1 years. Patients were seen at least once each year after discharge until end stage renal disease (ESRD) or death. In each consultation serum creatinine was measured and glomerular filtration rate estimated. Renal recovery was defined as a glomerular filtration rate value $60 mL/min/1.73 m2. A multiple logistic regression was performed to evaluate factors independently associated with renal recovery. Results: The median length of follow-up was 50 months (30–90 months). All patients had stabilized their glomerular filtration rates by 18 months and 83 % of them stabilized earlier: up to 12 months. Renal recovery occurred in 16 patients (19%) at discharge and in 54 (64%) by 18 months. Six patients died and four patients progressed to ESRD during the follow up period. Age (OR 1.09, p,0.0001) and serum creatinine at hospital discharge (OR 2.48, p = 0.007) were independent factors associated with non renal recovery. The acute kidney injury severity, evaluated by peak serum creatinine and nee

    Progression of Diet-Induced Diabetes in C57BL6J Mice Involves Functional Dissociation of Ca2+ Channels From Secretory Vesicles

    Get PDF
    OBJECTIVE: The aim of the study was to elucidate the cellular mechanism underlying the suppression of glucose-induced insulin secretion in mice fed a high-fat diet (HFD) for 15 weeks. RESEARCH DESIGN AND METHODS: C57BL6J mice were fed a HFD or a normal diet (ND) for 3 or 15 weeks. Plasma insulin and glucose levels in vivo were assessed by intraperitoneal glucose tolerance test. Insulin secretion in vitro was studied using static incubations and a perfused pancreas preparation. Membrane currents, electrical activity, and exocytosis were examined by patch-clamp technique measurements. Intracellular calcium concentration ([Ca(2+)](i)) was measured by microfluorimetry. Total internal reflection fluorescence microscope (TIRFM) was used for optical imaging of exocytosis and submembrane depolarization-evoked [Ca(2+)](i). The functional data were complemented by analyses of histology and gene transcription. RESULTS: After 15 weeks, but not 3 weeks, mice on HFD exhibited hyperglycemia and hypoinsulinemia. Pancreatic islet content and beta-cell area increased 2- and 1.5-fold, respectively. These changes correlated with a 20-50% reduction of glucose-induced insulin secretion (normalized to insulin content). The latter effect was not associated with impaired electrical activity or [Ca(2+)](i) signaling. Single-cell capacitance and TIRFM measurements of exocytosis revealed a selective suppression (>70%) of exocytosis elicited by short (50 ms) depolarization, whereas the responses to longer depolarizations were (500 ms) less affected. The loss of rapid exocytosis correlated with dispersion of Ca(2+) entry in HFD beta-cells. No changes in gene transcription of key exocytotic protein were observed. CONCLUSIONS: HFD results in reduced insulin secretion by causing the functional dissociation of voltage-gated Ca(2+) entry from exocytosis. These observations suggest a novel explanation to the well-established link between obesity and diabetes

    The Stem Cell Marker CD133 Associates with Enhanced Colony Formation and Cell Motility in Colorectal Cancer

    Get PDF
    CD133 is a membrane molecule that has been, controversially, reported as a CSC marker in colorectal cancer (CRC). In this study, we sought to clarify the expression and role of CD133 in CRC. Initially the size of the CD133−expressing (CD133+) population in eight well-described CRC cell lines was measured by flow cytometry and was found to range from 0% to >95%. The cell line HT29 has a CD133+ population of >95% and was chosen for functional evaluation of CD133 after gene knockdown by RNA interference. A time course assay showed that CD133 inhibition had no significant effect on cell proliferation or apoptosis. However, CD133 knockdown did result in greater susceptibility to staurosporine-induced apoptosis (p = 0.01) and reduction in cell motility (p<0.04). Since gene knockdown may cause “off-target” effects, the cell line SW480 (which has a CD133+ population of 40%) was sorted into pure CD133+ and CD133− populations to allow functional comparison of isogenic populations separated only by CD133 expression. In concordance with the knockdown experiments, a time course assay showed no significant proliferative differences between the CD133+/CD133− populations. Also greater resistance to staurosporine-induced apoptosis (p = 0.008), greater cell motility (p = 0.03) and greater colony forming efficiency was seen in the CD133+ population than the CD133− population in both 2D and 3D culture (p<0.0001 and p<0.003 respectively). Finally, the plasticity of CD133 expression in tumour cells was tested. Quantitative PCR analysis showed there was transcriptional repression in the CD133− population of SW480. Prolonged culture of a pure CD133− population resulted in re-emergence of CD133+ cells. We conclude that CD133 expression in CRCs is associated with some features attributable to stemness and that there is plasticity of CD133 expression. Further studies are necessary to delineate the mechanistic basis of these features

    Cten Is Targeted by Kras Signalling to Regulate Cell Motility in the Colon and Pancreas

    Get PDF
    CTEN/TNS4 is an oncogene in colorectal cancer (CRC) which enhances cell motility although the mechanism of Cten regulation is unknown. We found an association between high Cten expression and KRAS/BRAF mutation in a series of CRC cell lines (p = 0.03) and hypothesised that Kras may regulate Cten. To test this, Kras was knocked-down (using small interfering (si)RNA) in CRC cell lines SW620 and DLD1 (high Cten expressors and mutant for KRAS). In each cell line, Kras knockdown was mirrored by down-regulation of Cten Since Kras signals through Braf, we tested the effect of Kras knockdown in CRC cell line Colo205 (which shows high Cten expression and is mutant for BRAF but wild type for KRAS). Cten levels were unaffected by Kras knockdown whilst Braf knockdown resulted in reduced Cten expression suggesting that Kras signals via Braf to regulate Cten. Quantification of Cten mRNA and protein analysis following proteasome inhibition suggested that regulation was of Cten transcription. Kras knockdown inhibited cell motility. To test whether this could be mediated through Cten, SW620 cells were co-transfected with Kras specific siRNAs and a Cten expression vector. Restoring Cten expression was able to restore cell motility despite Kras knockdown (transwell migration and wounding assay, p<0.001 for both). Since KRAS is mutated in many cancers, we investigated whether this relationship could be demonstrated in other tumour models. The experiments were repeated in the pancreatic cancer cell lines Colo357 & PSN-1(both high Cten expressors and mutant for KRAS). In both cell lines, Kras was shown to regulate Cten and forced expression of Cten was able to rescue loss of cell motility following Kras knockdown in PSN-1 (transwell migration assay, p<0.001). We conclude that, in the colon and pancreas, Cten is a downstream target of Kras and may be a mechanism through which Kras regulates of cell motility

    Mapping development and health effects of cooking with solid fuels in low-income and middle-income countries, 2000–18: a geospatial modelling study

    Get PDF
    Background: More than 3 billion people do not have access to clean energy and primarily use solid fuels to cook. Use of solid fuels generates household air pollution, which was associated with more than 2 million deaths in 2019. Although local patterns in cooking vary systematically, subnational trends in use of solid fuels have yet to be comprehensively analysed. We estimated the prevalence of solid-fuel use with high spatial resolution to explore subnational inequalities, assess local progress, and assess the effects on health in low-income and middle-income countries (LMICs) without universal access to clean fuels. Methods: We did a geospatial modelling study to map the prevalence of solid-fuel use for cooking at a 5 km × 5 km resolution in 98 LMICs based on 2·1 million household observations of the primary cooking fuel used from 663 population-based household surveys over the years 2000 to 2018. We use observed temporal patterns to forecast household air pollution in 2030 and to assess the probability of attaining the Sustainable Development Goal (SDG) target indicator for clean cooking. We aligned our estimates of household air pollution to geospatial estimates of ambient air pollution to establish the risk transition occurring in LMICs. Finally, we quantified the effect of residual primary solid-fuel use for cooking on child health by doing a counterfactual risk assessment to estimate the proportion of deaths from lower respiratory tract infections in children younger than 5 years that could be associated with household air pollution. Findings: Although primary reliance on solid-fuel use for cooking has declined globally, it remains widespread. 593 million people live in districts where the prevalence of solid-fuel use for cooking exceeds 95%. 66% of people in LMICs live in districts that are not on track to meet the SDG target for universal access to clean energy by 2030. Household air pollution continues to be a major contributor to particulate exposure in LMICs, and rising ambient air pollution is undermining potential gains from reductions in the prevalence of solid-fuel use for cooking in many countries. We estimated that, in 2018, 205 000 (95% uncertainty interval 147 000–257 000) children younger than 5 years died from lower respiratory tract infections that could be attributed to household air pollution. Interpretation: Efforts to accelerate the adoption of clean cooking fuels need to be substantially increased and recalibrated to account for subnational inequalities, because there are substantial opportunities to improve air quality and avert child mortality associated with household air pollution. Funding: Bill &amp; Melinda Gates Foundation

    Control of the Intracellular Redox State by Glucose Participates in the Insulin Secretion Mechanism

    Get PDF
    Background: Production of reactive oxygen species (ROS) due to chronic exposure to glucose has been associated with impaired beta cell function and diabetes. However, physiologically, beta cells are well equipped to deal with episodic glucose loads, to which they respond with a fine tuned glucose-stimulated insulin secretion (GSIS). In the present study, a systematic investigation in rat pancreatic islets about the changes in the redox environment induced by acute exposure to glucose was carried out. Methodology/Principal Findings: Short term incubations were performed in isolated rat pancreatic islets. Glucose dose- and time-dependently reduced the intracellular ROS content in pancreatic islets as assayed by fluorescence in a confocal microscope. This decrease was due to activation of pentose-phosphate pathway (PPP). Inhibition of PPP blunted the redox control as well as GSIS in a dose-dependent manner. The addition of low doses of ROS scavengers at high glucose concentration acutely improved beta cell function. The ROS scavenger N-acetyl-L-cysteine increased the intracellular calcium response to glucose that was associated with a small decrease in ROS content. Additionally, the presence of the hydrogen peroxide-specific scavenger catalase, in its membrane-permeable form, nearly doubled glucose metabolism. Interestingly, though an increase in GSIS was also observed, this did not match the effect on glucose metabolism. Conclusions: The control of ROS content via PPP activation by glucose importantly contributes to the mechanisms that couple the glucose stimulus to insulin secretion. Moreover, we identified intracellular hydrogen peroxide as an inhibitor of glucose metabolism intrinsic to rat pancreatic islets. These findings suggest that the intracellular adjustment of the redox environment by glucose plays an important role in the mechanism of GSIS.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)(CAPES) Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, Brazi

    The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15–39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods: Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15–39 years to define adolescents and young adults. Findings: There were 1·19 million (95% UI 1·11–1·28) incident cancer cases and 396 000 (370 000–425 000) deaths due to cancer among people aged 15–39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59·6 [54·5–65·7] per 100 000 person-years) and high-middle SDI countries (53·2 [48·8–57·9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14·2 [12·9–15·6] per 100 000 person-years) and middle SDI (13·6 [12·6–14·8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23·5 million (21·9–25·2) DALYs to the global burden of disease, of which 2·7% (1·9–3·6) came from YLDs and 97·3% (96·4–98·1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation: Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Funding: Bill &amp; Melinda Gates Foundation, American Lebanese Syrian Associated Charities, St Baldrick's Foundation, and the National Cancer Institute
    corecore