70 research outputs found

    Investigation of genetic variability related to the in vitro floral hermaphrodism induction in Date palm (Phoenix dactylifera L.)

    Get PDF
    This paper reports on a molecular analysis study conducted on Date palm flowers from the Deglet Nour cultivar to investigate putative genetic variability related to the in vitro floral hermaphrodism induction. Natural male and female as well as hermaphrodite ones that were produced in vitro through the hormonal treatment of female flowers were submitted to ISSR-PCR analysis. Microsatellite based amplification (ISSR) was applied on genomic DNA from inflorescences taken at different periods of hormonal treatment corresponding to the various deviation stages to search for putative variations that may have occurred on the initial genome due to the application of plant growth regulators. Several amplification bands were purified, cloned, and sequenced. The results revealed that hormonal treatment entailed no detectable genetic variation in the treated Date palm flowers. Two of the selected and ISSR-PCR amplified DNA fragments showed however, possible links with flowering regulation. The findings indicate that these sequences are potential candidate gene markers that may enhance our understanding of flower development and sex identification in this species.Key words: Date palm, female inflorescences, hermaphrodite flowers, in vitro culture, ISSR, sex identification

    Besov-Type Spaces on Rd and Integrability for the Dunkl Transform

    No full text
    In this paper, we show the inclusion and the density of the Schwartz space in Besov-Dunkl spaces and we prove an interpolation formula for these spaces by the real method. We give another characterization for these spaces by convolution. Finally, we establish further results concerning integrability of the Dunkl transform of function in a suitable Besov-Dunkl space

    Design and analysis of vibration energy harvesters based on peak response statistics

    Get PDF
    Energy harvesting using cantilever piezoelectric vibration energy harvesters excited by Gaussian broadband random base excitation is considered. The optimal design and analysis of energy harvesters under random excitation is normally performed using the mean and standard deviation of a response quantity of interest, such as the voltage. An alternative approach based on the statistics of the peak voltage is developed in this paper. Three extreme response characteristics, namely (a) level crossing, (b) response peaks above certain level, and (c) fractional time spend above a certain level, have been employed. Two cases, namely the harvesting circuit with and without an inductor, have been considered. Exact closed-form expressions have been derived for number of level crossings, statistics of response peaks and fractional time spend above a certain level for the output voltage. It is shown that these quantities can be related to the standard deviation of the voltage and its derivative with respect to time. Direct numerical simulation has been used to validate the analytical expressions. Based on the analytical results, closed-form expressions for optimal system parameters have been proposed. Numerical examples are given to illustrate the applicability of the analytical results

    Electromechanical analysis of an adaptive piezoelectric energy harvester controlled by two segmented electrodes with shunt circuit networks

    Get PDF
    This paper presents an adaptive power harvester using a shunted piezoelectric control system with segmented electrodes. This technique has spurred new capability for widening the three simultaneous resonance frequency peaks using only a single piezoelectric laminated beam where normally previous works only provide a single peak for the resonance at the first mode. The benefit of the proposed techniques is that it provides effective and robust broadband power generation for application in self-powered wireless sensor devices. The smart structure beam with proof mass offset is considered to have simultaneous combination between vibration-based power harvesting and shunt circuit control-based electrode segments. As a result, the system spurs new development of the two mathematical methods using electromechanical closed-boundary value techniques and Ritz method-based weak-form analytical approach. The two methods have been used for comparison giving accurate results. For different electrode lengths using certain parametric tuning and harvesting circuit systems, the technique enables the prediction of the power harvesting that can be further proved to identify the performance of the system using the effect of varying circuit parameters so as to visualize the frequency and time waveform responses

    New materials and devices for preventing catheter-related infections

    Get PDF
    Catheters are the leading source of bloodstream infections for patients in the intensive care unit (ICU). Comprehensive unit-based programs have proven to be effective in decreasing catheter-related bloodstream infections (CR-BSIs). ICU rates of CR-BSI higher than 2 per 1,000 catheter-days are no longer acceptable. The locally adapted list of preventive measures should include skin antisepsis with an alcoholic preparation, maximal barrier precautions, a strict catheter maintenance policy, and removal of unnecessary catheters. The development of new technologies capable of further decreasing the now low CR-BSI rate is a major challenge. Recently, new materials that decrease the risk of skin-to-vein bacterial migration, such as new antiseptic dressings, were extensively tested. Antimicrobial-coated catheters can prevent CR-BSI but have a theoretical risk of selecting resistant bacteria. An antimicrobial or antiseptic lock may prevent bacterial migration from the hub to the bloodstream. This review discusses the available knowledge about these new technologies

    Efficiency of the TR Technique and the POPS Algorithm for Waveform Optimization in MISO-OFDM Systems

    No full text
    International audienceIn this paper, we extend the joint use of the Time Reversal (TR) precoding technique and the Ping-Pong Optimized Pulse Shaping (POPS) waveform optimization algorithm to design optimal transmit and receive waveforms for Multiple Input Single Output-Orthogonal Frequency Division Multiplexing (MISO-OFDM) systems. The design process banks on a full characterization of the scattering function of the TR-MISO channel, followed by the implementation of the POPS approach. Numerical analysis reveal a significant gain, brought by the optimized waveforms in TR-MISO-OFDM systems, in terms of Signal to Interference plus Noise Ratio (SINR), compared to the optimized waveforms in TR-SISO-OFDM systems and the PHYDYAS waveform in TR-MISO-OFDM systems
    corecore