20 research outputs found
Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey
Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020
Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries
Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
Small-signal stability effects of frequency and voltage controllers on power systems with integration of wind power
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 52-53).This thesis investigates the stability effects of the integration of wind power on multi-machine power systems. First, the small-signal stability effects of turbine governors connected to synchronous generators in the presence of large-scale penetration of wind and load power disturbances are analyzed. Results suggest that tuning the turbine governors when wind power generation is present can improve the small-signal stability of an interconnected system. Then, the transient stability effects of integrating doubly-fed induction wind turbine generators through different transmission line configurations and at different buses are analyzed. Results show that connecting the wind through transmission lines and to different buses introduces a delay in the oscillatory response of the synchronous generator speed, and bus voltage oscillations are also affected. Results also show that there is no significant effect on the base cases when using different interconnection voltages to connect the wind. Overall, the results can be used by power system operators when making decisions on turbine governor tuning and transmission line configurations when connecting wind farms to existing power systems while optimizing for small-signal and transient stability response.by Hussein Mohamed Abdelhalim.S.M
Influence of Surfactant Structure on the Stability of Water-in-Oil Emulsions under High-Temperature High-Salinity Conditions
Emulsified water-in-oil (W/O) systems are extensively used in the oil industry for water control and acid stimulation. Emulsifiers are commonly utilized to emulsify a water-soluble material to form W/O emulsion. The selection of a particular surfactant for such jobs is critical and certainly expensive. In this work, the impact of surfactant structure on the stability of W/O emulsions is investigated using the hydrophilic-lipophilic balance (HLB) of the surfactant. Different commercial surfactants were evaluated for use as emulsifiers for W/O systems at high-temperature (up to 120°C) high-salinity (221,673 ppm) HTHS conditions. Diverse surfactants were examined including ethoxylates, polyethylene glycols, fluorinated surfactants, and amides. Both commercial Diesel and waste oil are used for the oleic phase to prepare the emulsified system. Waste oil has shown higher stability (less separation) in comparison with Diesel. This work has successfully identified stable emulsified W/O systems that can tolerate HTHS environments using HLB approach. Amine Acetate family shows higher stability in comparison with Glycol Ether family and at even lower concentration. New insights into structure-surfactant stability relationship, beyond the HLB approach, are provided for surfactant selection
Gelation of Emulsified Polyacrylamide/Polyethylenimine under High-Temperature, High-Salinity Conditions: Rheological Investigation
Emulsified gels are proposed as a method of water shut-off in oil and gas reservoirs and are designed to separate into a water phase and an oil phase under reservoir conditions. A first of its kind rheological study on the gelation kinetics and strength of organically cross-linked polyacrylamide (PAM) with polyethylenimine (PEI) emulsified into a diesel phase is presented. A lower rate of cross-linking is achieved when emulsified PAM/PEI systems are compared with nonemulsified PAM/PEI systems. For the stable emulsified PAM/PEI formulation (with no separation), the elastic modulus decreased by 54% at 120 C in comparison with the nonemulsified system. It is suggested that the emulsification acts as an insulator, hence heat transfer to the gelant is slow. The elastic (i.e., storage) modulus of the emulsified PAM/PEI increased by about 29% when the temperature was raised from 120 to 150 ?C. The elastic modulus decreased in the presence of salts, leading to low gel strength and longer gelation time. Ammonium chloride proved to be more efficient than NaCl in the retardation of emulsified gels. The gelation kinetics of the emulsified PAM/PEI is analyzed using the Avrami-based model. The activation energy for emulsified gels was found to be ?10 times higher than for nonemulsified gels