8 research outputs found

    Cavity enhanced multiplexed comb spectroscopy : ML-CEAS and Vernier effect techniques Application : a UV Spectrometer for in situ measurements of reactive molecules.

    No full text
    La communauté de la chimie atmosphérique souffre d'un manque de mesures rapides, fiables résolues spatialement et temporellement pour un large éventail de molécules réactives (radicaux tels que NO2, OH, BrO, IO, etc). En raison de leur forte réactivité, ces molécules contrôlent largement la durée de vie et la concentration de nombreuses espèces clés dans l'atmosphère, et peuvent avoir un impact important sur le climat. Les concentrations de ces radicaux sont extrêmement faibles (ppbv ou moins) et très variable dans le temps et dans l'espace, ce qui impose un véritable défi lors de la détection. Dans la première partie de cette thèse, un spectromètre UV robuste, compacte et transportable est développé, exploitant la technique ML-CEAS pour mesurer à des niveaux très faibles (pptv et même en dessous) des molécules réactives d'importance atmosphérique, en particulier, les radicaux d'oxyde d'halogènes, afin de répondre aux besoins émergents. La technique ML-CEAS est basée sur le couplage d'un laser femtoseconde à blocage de modes à une cavité optique de haute finesse, qui agit comme un piège à photons pour augmenter l'interaction entre la lumière et l'échantillon de gaz intracavité. Cela permet d'améliorer fortement la sensibilité d'absorption. La limite de détection obtenue pour le radical IO est de 20 ppqv pour un temps d'acquisition de 5 minutes, ce qui est un résultat impressionnant. Dans la deuxième partie de cette thèse, une nouvelle technique spectroscopique est développée appelée effet Vernier, qui est également basé sur l'interaction entre un laser femtoseconde à blocage de mode et une cavité optique de haute finesse. Cette technique fournit une sensibilité de détection similaire à la technique ML-CEAS, mais l'avantage est que le nombre des éléments spectraux est donné par la finesse de la cavité optique et donc peut atteindre plusieurs dizaines de milliers. De plus, cette configuration simplifie le montage expérimental par la suppression du spectrographe qui est remplacé par une simple photodiode. Le temps d'acquisition d'un spectre peut être aussi réduit à moins d' 1 ms.The atmospheric chemistry community suffers a lack of fast, reliable and space resolved measurements for a wide set of reactive molecules (e.g. radicals such as OH, NO3, BrO, IO, etc). Due to their high reactivity, these molecules largely control the lifetime and concentration of numerous key atmospheric species, and may have an important impact on the climate. The concentrations of such radicals are extremely low (ppbv or less) and highly variable in time and space, which imposes a real challenge during the detection. In the first part of this thesis, a compact, robust and transportable UV spectrometer is developed, exploiting the Mode-Locked Cavity Enhanced Absorption Spectroscopy (ML-CEAS) technique to measure pptv and sub-pptv levels of atmospherically important reactive molecules, in particular, halogen oxide radicals, to respond to the emerging needs. The ML-CEAS technique is based on coupling a Mode-Locked femtosecond laser to a high finesse optical cavity, which acts as a photon trap to increase the interaction between the light and the intracavity gas sample, which highly enhances the absorption sensitivity. The detection limit obtained for the IO radical is 20 ppqv (part per quadrillion), which is an impressive result. In the second part of this thesis, a new spectroscopic technique is developed, called Vernier effect, which is also based on the interaction between a mode-locked femtosecond laser with a high finesse optical cavity. This technique provides detection sensitivity similar to that of ML-CEAS technique, but the advantage is that the number of the spectral elements is given by the cavity finesse, so it can reach ten thousands, as well as this technique has a simple setup, where the spectrograph is replaced by a photodiode. Additionally, the time required to measure one output absorption spectrum can be less than 1 ms

    Evaluation of a PVT Air Collector

    No full text
    Hybrid Photovoltaic Thermal (PVT) collectors are an emerging technology that combines PV and solar thermal systems in a single solar collector producing heat and electricity simultaneously. The focus of this thesis work is to evaluate the performance of unglazed open loop PVT air system integrated on a garage roof in Borlänge. As it is thought to have a significant potential for preheating ventilation of the building and improving the PV modules electrical efficiency. The performance evaluation is important to optimize the cooling strategy of the collector in order to enhance its electrical efficiency and maximize the production of thermal energy. The evaluation process involves monitoring the electrical and thermal energies for a certain period of time and investigating the cooling effect on the performance through controlling the air mass flow provided by a variable speed fan connected to the collector by an air distribution duct. The distribution duct transfers the heated outlet air from the collector to inside the building. The PVT air collector consists of 34 Solibro CIGS type PV modules (115 Wp for each module) which are roof integrated and have replaced the traditional roof material. The collector is oriented toward the south-west with a tilt of 29 ᵒ. The collector consists of 17 parallel air ducts formed between the PV modules and the insulated roof surface. Each air duct has a depth of 0.05 m, length of 2.38 m and width of 2.38 m. The air ducts are connected to each other through holes. The monitoring system is based on using T-type thermocouples to measure the relevant temperatures, air sensor to measure the air mass flow. These parameters are needed to calculate the thermal energy. The monitoring system contains also voltage dividers to measure the PV modules voltage and shunt resistance to measure the PV current, and AC energy meters which are needed to calculate the produced electrical energy. All signals recorded from the thermocouples, voltage dividers and shunt resistances are connected to data loggers. The strategy of cooling in this work was based on switching the fan on, only when the difference between the air duct temperature (under the middle of top of PV column) and the room temperature becomes higher than 5 °C. This strategy was effective in term of avoiding high electrical consumption by the fan, and it is recommended for further development. The temperature difference of 5 °C is the minimum value to compensate the heat losses in the collecting duct and distribution duct. The PVT air collector has an area of (Ac=32 m2), and air mass flow of 0.002 kg/s m2. The nominal output power of the collector is 4 kWppv (34 CIGS modules with 115 Wppvfor each module). The collector produces thermal output energy of 6.88 kWth/day (0.21 kWth/m2 day) and an electrical output energy of 13.46 kWhel/day (0.42 kWhel/m2 day) with cooling case. The PVT air collector has a daily thermal energy yield of 1.72 kWhth/kWppv, and a daily PV electrical energy yield of 3.36 kWhel /kWppv. The fan energy requirement in this case was 0.18 kWh/day which is very small compared to the electrical energy generated by the PV collector. The obtained thermal efficiency was 8 % which is small compared to the results reported in literature for PVT air collectors. The small thermal efficiency was due to small operating air mass flow. Therefore, the study suggests increasing the air mass flow by a factor of 25. The electrical efficiency was fluctuating around 14 %, which is higher than the theoretical efficiency of the PV modules, and this discrepancy was due to the poor method of recording the solar irradiance in the location. Due to shading effect, it was better to use more than one pyranometer

    Evaluation of a PVT Air Collector

    No full text
    Hybrid Photovoltaic Thermal (PVT) collectors are an emerging technology that combines PV and solar thermal systems in a single solar collector producing heat and electricity simultaneously. The focus of this thesis work is to evaluate the performance of unglazed open loop PVT air system integrated on a garage roof in Borlänge. As it is thought to have a significant potential for preheating ventilation of the building and improving the PV modules electrical efficiency. The performance evaluation is important to optimize the cooling strategy of the collector in order to enhance its electrical efficiency and maximize the production of thermal energy. The evaluation process involves monitoring the electrical and thermal energies for a certain period of time and investigating the cooling effect on the performance through controlling the air mass flow provided by a variable speed fan connected to the collector by an air distribution duct. The distribution duct transfers the heated outlet air from the collector to inside the building. The PVT air collector consists of 34 Solibro CIGS type PV modules (115 Wp for each module) which are roof integrated and have replaced the traditional roof material. The collector is oriented toward the south-west with a tilt of 29 ᵒ. The collector consists of 17 parallel air ducts formed between the PV modules and the insulated roof surface. Each air duct has a depth of 0.05 m, length of 2.38 m and width of 2.38 m. The air ducts are connected to each other through holes. The monitoring system is based on using T-type thermocouples to measure the relevant temperatures, air sensor to measure the air mass flow. These parameters are needed to calculate the thermal energy. The monitoring system contains also voltage dividers to measure the PV modules voltage and shunt resistance to measure the PV current, and AC energy meters which are needed to calculate the produced electrical energy. All signals recorded from the thermocouples, voltage dividers and shunt resistances are connected to data loggers. The strategy of cooling in this work was based on switching the fan on, only when the difference between the air duct temperature (under the middle of top of PV column) and the room temperature becomes higher than 5 °C. This strategy was effective in term of avoiding high electrical consumption by the fan, and it is recommended for further development. The temperature difference of 5 °C is the minimum value to compensate the heat losses in the collecting duct and distribution duct. The PVT air collector has an area of (Ac=32 m2), and air mass flow of 0.002 kg/s m2. The nominal output power of the collector is 4 kWppv (34 CIGS modules with 115 Wppvfor each module). The collector produces thermal output energy of 6.88 kWth/day (0.21 kWth/m2 day) and an electrical output energy of 13.46 kWhel/day (0.42 kWhel/m2 day) with cooling case. The PVT air collector has a daily thermal energy yield of 1.72 kWhth/kWppv, and a daily PV electrical energy yield of 3.36 kWhel /kWppv. The fan energy requirement in this case was 0.18 kWh/day which is very small compared to the electrical energy generated by the PV collector. The obtained thermal efficiency was 8 % which is small compared to the results reported in literature for PVT air collectors. The small thermal efficiency was due to small operating air mass flow. Therefore, the study suggests increasing the air mass flow by a factor of 25. The electrical efficiency was fluctuating around 14 %, which is higher than the theoretical efficiency of the PV modules, and this discrepancy was due to the poor method of recording the solar irradiance in the location. Due to shading effect, it was better to use more than one pyranometer

    Spectroscopie Laser avec des cavités résonantes de haute finesse couplées à un peigne de fréquences : ML-CEAS et vernier effet techniques. Applications à la mesure in situ de molécules réactives dans les domaines UV et visible.

    No full text
    The atmospheric chemistry community suffers a lack of fast, reliable and space resolved measurements for a wide set of reactive molecules (e.g. radicals such as OH, NO3, BrO, IO, etc). Due to their high reactivity, these molecules largely control the lifetime and concentration of numerous key atmospheric species, and may have an important impact on the climate. The concentrations of such radicals are extremely low (ppbv or less) and highly variable in time and space, which imposes a real challenge during the detection. In the first part of this thesis, a compact, robust and transportable UV spectrometer is developed, exploiting the Mode-Locked Cavity Enhanced Absorption Spectroscopy (ML-CEAS) technique to measure pptv and sub-pptv levels of atmospherically important reactive molecules, in particular, halogen oxide radicals, to respond to the emerging needs. The ML-CEAS technique is based on coupling a Mode-Locked femtosecond laser to a high finesse optical cavity, which acts as a photon trap to increase the interaction between the light and the intracavity gas sample, which highly enhances the absorption sensitivity. The detection limit obtained for the IO radical is 20 ppqv (part per quadrillion), which is an impressive result. In the second part of this thesis, a new spectroscopic technique is developed, called Vernier effect, which is also based on the interaction between a mode-locked femtosecond laser with a high finesse optical cavity. This technique provides detection sensitivity similar to that of ML-CEAS technique, but the advantage is that the number of the spectral elements is given by the cavity finesse, so it can reach ten thousands, as well as this technique has a simple setup, where the spectrograph is replaced by a photodiode. Additionally, the time required to measure one output absorption spectrum can be less than 1 ms.La communauté de la chimie atmosphérique souffre d'un manque de mesures rapides, fiables résolues spatialement et temporellement pour un large éventail de molécules réactives (radicaux tels que NO2, OH, BrO, IO, etc). En raison de leur forte réactivité, ces molécules contrôlent largement la durée de vie et la concentration de nombreuses espèces clés dans l'atmosphère, et peuvent avoir un impact important sur le climat. Les concentrations de ces radicaux sont extrêmement faibles (ppbv ou moins) et très variable dans le temps et dans l'espace, ce qui impose un véritable défi lors de la détection. Dans la première partie de cette thèse, un spectromètre UV robuste, compacte et transportable est développé, exploitant la technique ML-CEAS pour mesurer à des niveaux très faibles (pptv et même en dessous) des molécules réactives d'importance atmosphérique, en particulier, les radicaux d'oxyde d'halogènes, afin de répondre aux besoins émergents. La technique ML-CEAS est basée sur le couplage d'un laser femtoseconde à blocage de modes à une cavité optique de haute finesse, qui agit comme un piège à photons pour augmenter l'interaction entre la lumière et l'échantillon de gaz intracavité. Cela permet d'améliorer fortement la sensibilité d'absorption. La limite de détection obtenue pour le radical IO est de 20 ppqv pour un temps d'acquisition de 5 minutes, ce qui est un résultat impressionnant. Dans la deuxième partie de cette thèse, une nouvelle technique spectroscopique est développée appelée effet Vernier, qui est également basé sur l'interaction entre un laser femtoseconde à blocage de mode et une cavité optique de haute finesse. Cette technique fournit une sensibilité de détection similaire à la technique ML-CEAS, mais l'avantage est que le nombre des éléments spectraux est donné par la finesse de la cavité optique et donc peut atteindre plusieurs dizaines de milliers. De plus, cette configuration simplifie le montage expérimental par la suppression du spectrographe qui est remplacé par une simple photodiode. Le temps d'acquisition d'un spectre peut être aussi réduit à moins d' 1 ms

    Spectroscopie Laser avec des cavités résonantes de haute finesse couplées à un peigne de fréquences (ML-CEAS et vernier effet techniques. Applications à la mesure in situ de molécules réactives dans les domaines UV et visible.)

    No full text
    La communauté de la chimie atmosphérique souffre d'un manque de mesures rapides, fiables résolues spatialement et temporellement pour un large éventail de molécules réactives (radicaux tels que NO2, OH, BrO, IO, etc). En raison de leur forte réactivité, ces molécules contrôlent largement la durée de vie et la concentration de nombreuses espèces clés dans l'atmosphère, et peuvent avoir un impact important sur le climat. Les concentrations de ces radicaux sont extrêmement faibles (ppbv ou moins) et très variable dans le temps et dans l'espace, ce qui impose un véritable défi lors de la détection. Dans la première partie de cette thèse, un spectromètre UV robuste, compacte et transportable est développé, exploitant la technique ML-CEAS pour mesurer à des niveaux très faibles (pptv et même en dessous) des molécules réactives d'importance atmosphérique, en particulier, les radicaux d'oxyde d'halogènes, afin de répondre aux besoins émergents. La technique ML-CEAS est basée sur le couplage d'un laser femtoseconde à blocage de modes à une cavité optique de haute finesse, qui agit comme un piège à photons pour augmenter l'interaction entre la lumière et l'échantillon de gaz intracavité. Cela permet d'améliorer fortement la sensibilité d'absorption. La limite de détection obtenue pour le radical IO est de 20 ppqv pour un temps d'acquisition de 5 minutes, ce qui est un résultat impressionnant. Dans la deuxième partie de cette thèse, une nouvelle technique spectroscopique est développée appelée effet Vernier, qui est également basé sur l'interaction entre un laser femtoseconde à blocage de mode et une cavité optique de haute finesse. Cette technique fournit une sensibilité de détection similaire à la technique ML-CEAS, mais l'avantage est que le nombre des éléments spectraux est donné par la finesse de la cavité optique et donc peut atteindre plusieurs dizaines de milliers. De plus, cette configuration simplifie le montage expérimental par la suppression du spectrographe qui est remplacé par une simple photodiode. Le temps d'acquisition d'un spectre peut être aussi réduit à moins d' 1 ms.The atmospheric chemistry community suffers a lack of fast, reliable and space resolved measurements for a wide set of reactive molecules (e.g. radicals such as OH, NO3, BrO, IO, etc). Due to their high reactivity, these molecules largely control the lifetime and concentration of numerous key atmospheric species, and may have an important impact on the climate. The concentrations of such radicals are extremely low (ppbv or less) and highly variable in time and space, which imposes a real challenge during the detection. In the first part of this thesis, a compact, robust and transportable UV spectrometer is developed, exploiting the Mode-Locked Cavity Enhanced Absorption Spectroscopy (ML-CEAS) technique to measure pptv and sub-pptv levels of atmospherically important reactive molecules, in particular, halogen oxide radicals, to respond to the emerging needs. The ML-CEAS technique is based on coupling a Mode-Locked femtosecond laser to a high finesse optical cavity, which acts as a photon trap to increase the interaction between the light and the intracavity gas sample, which highly enhances the absorption sensitivity. The detection limit obtained for the IO radical is 20 ppqv (part per quadrillion), which is an impressive result. In the second part of this thesis, a new spectroscopic technique is developed, called Vernier effect, which is also based on the interaction between a mode-locked femtosecond laser with a high finesse optical cavity. This technique provides detection sensitivity similar to that of ML-CEAS technique, but the advantage is that the number of the spectral elements is given by the cavity finesse, so it can reach ten thousands, as well as this technique has a simple setup, where the spectrograph is replaced by a photodiode. Additionally, the time required to measure one output absorption spectrum can be less than 1 ms.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    A transportable spectrometer for in situ and local measurements of iodine monoxide at mixing ratios in the 10-14 range

    No full text
    International audienceWe present a robust, compact, and transportable instrument that measures the iodine monoxide atmospheric radical at extremely low concentration, down to 40 ppqv (parts per quadrillion by volume, 1:1015). As nitrogen dioxide is strongly absorbed in the same spectral region it could be simultaneously measured down to 4 pptv (parts per trillion by volume, 1:1012). Relying on ''mode locked cavity-enhanced absorption spectroscopy,'' the instrument makes use of a free-running commercial femtosecond Titane Saphir laser. We demonstrate that this multiplex detection scheme provides shot noise limited spectra for acquisition times as long as 5 min. Moreover, this instrument is very versatile as it can be potentially tuned from the infrared to the ultraviolet (1080-340 nm) to reach various molecular absorptions. It has been recently deployed at the Station Biologique de Roscoff on the North West Atlantic coast of France

    Frequency Comb Based Spectrometer for <i>in Situ</i> and Real Time Measurements of IO, BrO, NO<sub>2</sub>, and H<sub>2</sub>CO at pptv and ppqv Levels

    No full text
    We report an instrument designed for trace gas measurement of highly reactive halogenated radicals, such as bromine oxide and iodine oxide, as well as for nitrogen dioxide and formaldehyde. This compact and robust spectrometer relies on an alternated injection of a frequency-doubled femtosecond radiation at 338 and 436 nm into two parallel high-finesse cavities, for measuring BrO + H<sub>2</sub>CO, and IO + NO<sub>2</sub>, respectively. The transmission of the broadband radiation through the cavity is analyzed with a high resolution, compact spectrograph consisting of an echelle grating and a high sensitivity CCD camera. The transportable instrument fits on a breadboard 120 × 60 cm size and is suitable for <i>in situ</i> and real time measurements of these species. A field campaign at the Marine Boundary Layer in Roscoff (in the northwest of France, 48.7°N, 4.0°W) during June 2011 illustrates the outstanding performance of the instrument, which reaches a bandwidth normalized minimum absorption coefficient of 1.3 × 10<sup>–11</sup> cm<sup>–1</sup> Hz<sup>–1/2</sup> per spectral element, and provides detection levels as low as 20 parts per quadrillion of IO in 5 min of acquisition
    corecore