770 research outputs found

    A survey of castration methods and associated livestock management practices performed by bovine veterinarians in the United States

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Castration of male calves destined for beef production is a common management practice performed in the United States amounting to approximately 15 million procedures per year. Societal concern about the moral and ethical treatment of animals is increasing. Therefore, production agriculture is faced with the challenge of formulating animal welfare policies relating to routine management practices such as castration. To enable the livestock industry to effectively respond to these challenges there is a need for more data on management practices that are commonly used in cattle production systems. The objective of this survey was to describe castration methods, adverse events and husbandry procedures performed by U.S. veterinarians at the time of castration. Invitations to participate in the survey were sent to email addresses of 1,669 members of the American Association of Bovine Practitioners and 303 members of the Academy of Veterinary Consultants.</p> <p>Results</p> <p>After partially completed surveys and missing data were omitted, 189 responses were included in the analysis. Surgical castration with a scalpel followed by testicular removal by twisting (calves <90 kg) or an emasculator (calves >90 kg) was the most common method of castration used. The potential risk of injury to the operator, size of the calf, handling facilities and experience with the technique were the most important considerations used to determine the method of castration used. Swelling, stiffness and increased lying time were the most prevalent adverse events observed following castration. One in five practitioners report using an analgesic or local anesthetic at the time of castration. Approximately 90% of respondents indicated that they vaccinate and dehorn calves at the time of castration. Over half the respondents use disinfectants, prophylactic antimicrobials and tetanus toxoid to reduce complications following castration.</p> <p>Conclusions</p> <p>The results of this survey describe current methods of castration and associated management practices employed by bovine veterinarians in the U.S. Such data are needed to guide future animal well-being research, the outcomes of which can be used to develop industry-relevant welfare guidelines.</p

    Rank-(n – 1) convexity and quasiconvexity for divergence free fields

    Get PDF
    The CAST experiment at CERN (European Organization of Nuclear Research) searches for axions from the sun. The axion is a pseudoscalar particle that was motivated by theory thirty years ago, with the intention to solve the strong CP problem. Together with the neutralino, the axion is one of the most promising dark matter candidates. The CAST experiment has been taking data during the last two years, setting an upper limit on the coupling of axions to photons more restrictive than from any other solar axion search in the mass range below 0.1 eV. In 2005 CAST will enter a new experimental phase extending the sensitivity of the experiment to higher axion masses. The CAST experiment strongly profits from technology developed for high energy physics and for X-ray astronomy: A superconducting prototype LHC magnet is used to convert potential axions to detectable X-rays in the 1-10 keV range via the inverse Primakoff effect. The most sensitive detector system of CAST is a spin-off from space technology, a Wolter I type X-ray optics in combination with a prototype pn-CCD developed for ESA's XMM-Newton mission. As in other rare event searches, background suppression and a thorough shielding concept is essential to improve the sensitivity of the experiment to the best possible. In this context CAST offers the opportunity to study the background of pn-CCDs and its long term behavior in a terrestrial environment with possible implications for future space applications. We will present a systematic study of the detector background of the pn-CCD of CAST based on the data acquired since 2002 including preliminary results of our background simulations.Comment: 11 pages, 8 figures, to appear in Proc. SPIE 5898, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XI

    The Swift X-Ray Telescope: Status and Performance

    Full text link
    We present science highlights and performance from the Swift X-ray Telescope (XRT), which was launched on November 20, 2004. The XRT covers the 0.2-10 keV band, and spends most of its time observing gamma-ray burst (GRB)afterglows, though it has also performed observations of many other objects. By mid-August 2007, the XRT had observed over 220 GRB afterglows, detecting about 96% of them. The XRT positions enable followup ground-based optical observations, with roughly 60% of the afterglows detected at optical or near IR wavelengths. Redshifts are measured for 33% of X-ray afterglows. Science highlights include the discovery of flaring behavior at quite late times, with implications for GRB central engines; localization of short GRBs, leading to observational support for compact merger progenitors for this class of bursts; a mysterious plateau phase to GRB afterglows; as well as many other interesting observations such as X-ray emission from comets, novae, galactic transients, and other objects.Comment: 9 pages, 14 figure

    The in-flight spectroscopic performance of the Swift XRT CCD camera during 2006-2007

    Full text link
    The Swift X-ray Telescope focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 135 eV FWHM at 5.9 keV as measured before launch. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant in-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Comparison of observed spectra with models folded through the instrument response produces negative residuals around and below the Oxygen edge. We discuss several possible causes for such residuals. Traps created by proton damage on the CCD increase the charge transfer inefficiency (CTI) over time. We describe the evolution of the CTI since the launch and its effect on the CCD spectral resolution and the gain.Comment: 8 pages, 5 colour figures, submitted to SPI

    A refined position catalog of the Swift XRT afterglows

    Full text link
    We present a catalogue of refined positions of 68 gamma ray burst (GRB) afterglows observed by the Swift X-ray Telescope (XRT) from the launch up to 2005 Oct 16. This is a result of the refinement of the XRT boresight calibration. We tested this correction by means of a systematic study of a large sample of X-ray sources observed by XRT with well established optical counterparts. We found that we can reduce the systematic error radius of the measurements by a factor of two, from 6.5" to 3.2" (90% of confidence). We corrected all the positions of the afterglows observed by XRT in the first 11 months of the Swift mission. This is particularly important for the 37 X-ray afterglows without optical counterpart. Optical follow-up of dark GRBs, in fact, will be more efficient with the use of the more accurate XRT positions.Comment: 4 pages, 4 figures, 1 table ; accepted for publication in A&A Letters. The revised version contains updated position

    The SWIFT Gamma-Ray Burst X-Ray Telescope

    Get PDF
    The Swift Gamma-Ray Burst Explorer is designed to make prompt multi-wavelength observations of Gamma-Ray Bursts and GRB afterglows. The X-ray Telescope enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM-Newton/ EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with an effective area of more than 120 sq cm at 1.5 keV, a field of view of 23.6 x 23.6 arcminutes, and an angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10(exp 14) erg/sq cm/s in 10(exp 4) seconds. The instrument provides automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Iron line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return as the source intensity fades. The XRT measures spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and follows each burst for days or weeks. We provide an overview of the X-ray Telescope scientific background from which the systems engineering requirements were derived, with specific emphasis on the design and qualification aspects from conception through to launch. We describe the impact on cleanliness and vacuum requirements for the instrument low energy response and to maintain the high sensitivity to the fading signal of the Gamma-ray Bursts

    GRB 050117: Simultaneous Gamma-ray and X-ray Observations with the Swift Satellite

    Get PDF
    The Swift Gamma-Ray Burst Explorer performed its first autonomous, X-ray follow-up to a newly detected GRB on 2005 January 17, within 193 seconds of the burst trigger by the Swift Burst Alert Telescope. While the burst was still in progress, the X-ray Telescope obtained a position and an image for an un-catalogued X-ray source; simultaneous with the gamma-ray observation. The XRT observed flux during the prompt emission was 1.1 x 10(exp -8) ergs/sq cm/s in the 0.5-10 keV energy band. The emission in the X-ray band decreased by three orders of magnitude within 700 seconds, following the prompt emission. This is found to be consistent with the gamma-ray decay when extrapolated into the XRT energy band. During the following 6.3 hours, the XRT observed the afterglow in an automated sequence for an additional 947 seconds, until the burst became fully obscured by the Earth limb. A faint, extremely slowly decaying afterglow, alpha=-0.21, was detected. Finally, a break in the lightcurve occurred and the flux decayed with alpha<-1.2. The X-ray position triggered many follow-up observations: no optical afterglow could be confirmed, although a candidate was identified 3 arcsecs from the XRT position

    Swift observations of the 2006 outburst of the recurrent nova RS Ophiuchi: III. X-ray spectral modelling

    Full text link
    Following the Swift X-ray observations of the 2006 outburst of the recurrent nova RS Ophiuchi, we developed hydrodynamical models of mass ejection from which the forward shock velocities were used to estimate the ejecta mass and velocity. In order to further constrain our model parameters, here we present synthetic X-ray spectra from our hydrodynamical calculations which we compare to the Swift data. An extensive set of simulations was carried out to find a model which best fits the spectra up to 100 days after outburst. We find a good fit at high energies but require additional absorption to match the low energy emission. We estimate the ejecta mass to be in the range (2-5) x 10^{-7} solar masses and the ejection velocity to be greater than 6000 km/s (and probably closer to 10,000 km/s). We also find that estimates of shock velocity derived from gas temperatures via standard model fits to the X-ray spectra are much lower than the true shock velocities.Comment: 13 pages, 5 figures, Accepted for publication in Ap
    corecore