20 research outputs found

    Emission metrics for quantifying regional climate impacts of aviation

    Get PDF
    This study examines the impacts of emissions from aviation in six source regions on global and regional temperatures. We consider the NOx-induced impacts on ozone and methane, aerosols and contrail-cirrus formation and calculate the global and regional emission metrics global warming potential (GWP), global temperature change potential (GTP) and absolute regional temperature change potential (ARTP). The GWPs and GTPs vary by a factor of 2–4 between source regions. We find the highest aviation aerosol metric values for South Asian emissions, while contrail-cirrus metrics are higher for Europe and North America, where contrail formation is prevalent, and South America plus Africa, where the optical depth is large once contrails form. The ARTP illustrate important differences in the latitudinal patterns of radiative forcing (RF) and temperature response: the temperature response in a given latitude band can be considerably stronger than suggested by the RF in that band, also emphasizing the importance of large-scale circulation impacts. To place our metrics in context, we quantify temperature change in four broad latitude bands following 1 year of emissions from present-day aviation, including CO2. Aviation over North America and Europe causes the largest net warming impact in all latitude bands, reflecting the higher air traffic activity in these regions. Contrail cirrus gives the largest warming contribution in the short term, but remain important at about 15 % of the CO2 impact in several regions even after 100 years. Our results also illustrate both the short- and long-term impacts of CO2: while CO2 becomes dominant on longer timescales, it also gives a notable warming contribution already 20 years after the emission. Our emission metrics can be further used to estimate regional temperature change under alternative aviation emission scenarios. A first evaluation of the ARTP in the context of aviation suggests that further work to account for vertical sensitivities in the relationship between RF and temperature response would be valuable for further use of the concept

    A continued role of short-lived climate forcers under the Shared Socioeconomic Pathways

    Get PDF
    Mitigation of non-CO2 emissions plays a key role in meeting the Paris Agreement ambitions and sustainable development goals. Implementation of respective policies addressing these targets mainly occur at sectoral and regional levels, and designing efficient mitigation strategies therefore relies on detailed knowledge about the mix of emissions from individual sources and their subsequent climate impact. Here we present a comprehensive dataset of near- and long-term global temperature responses to emissions of CO2 and individual short-lived climate forcers (SLCFs) from 7 sectors and 13 regions – for both present-day emissions and their continued evolution as projected under the Shared Socioeconomic Pathways (SSPs). We demonstrate the key role of CO2 in driving both near- and long-term warming and highlight the importance of mitigating methane emissions from agriculture, waste management, and energy production as the primary strategy to further limit near-term warming. Due to high current emissions of cooling SLCFs, policies targeting end-of-pipe energy sector emissions may result in net added warming unless accompanied by simultaneous methane and/or CO2 reductions. We find that SLCFs are projected to play a continued role in many regions, particularly those including low- to medium-income countries, under most of the SSPs considered here. East Asia, North America, and Europe will remain the largest contributors to total net warming until 2100, regardless of scenario, while South Asia and Africa south of the Sahara overtake Europe by the end of the century in SSP3-7.0 and SSP5-8.5. Our dataset is made available in an accessible format, aimed also at decision makers, to support further assessment of the implications of policy implementation at the sectoral and regional scales

    Greater fuel efficiency is potentially preferable to reducing NOx emissions for aviation’s climate impacts

    Get PDF
    Aviation emissions of nitrogen oxides (NOx) alter the composition of the atmosphere, perturbing the greenhouse gases ozone and methane, resulting in positive and negative radiative forcing effects, respectively. In 1981, the International Civil Aviation Organization adopted a first certification standard for the regulation of aircraft engine NOx emissions with subsequent increases in stringency in 1992, 1998, 2004 and 2010 to offset the growth of the environmental impact of air transport, the main motivation being to improve local air quality with the assumed co-benefit of reducing NOx emissions at altitude and therefore their climate impacts. Increased stringency is an ongoing topic of discussion and more stringent standards are usually associated with their beneficial environmental impact. Here we show that this is not necessarily the right direction with respect to reducing the climate impacts of aviation (as opposed to local air quality impacts) because of the tradeoff effects between reducing NOx emissions and increased fuel usage, along with a revised understanding of the radiative forcing effects of methane. Moreover, the predicted lower surface air pollution levels in the future will be beneficial for reducing the climate impact of aviation NOx emissions. Thus, further efforts leading to greater fuel efficiency, and therefore lower CO2 emissions, may be preferable to reducing NOx emissions in terms of aviation’s climate impacts

    The climate impact of travel behavior: A German case study with illustrative mitigation options

    No full text
    Global greenhouse gas mitigation should include the growing share of emissions from transportation. To help understand the mitigation potential of changing travel behavior requires disaggregating the climate impacts of transportation by transport mode, distance, and travel behavior. Here we use disaggregated data on travel behavior to calculate the climate impact of Germans traveling nationally and internationally in 2008 and develop some illustrative mitigation options. We include all relevant long-lived greenhouse gases and short-lived climate forcers and use global temperature change for 50 years of sustained emissions as the emission metric. The total climate impact is determined almost entirely by car (~46%) and air travel (~45%), with smaller contributions from public transportation. The climate impact from the highest income group is 250% larger than from the lowest income group. However, the middle classes account for more than two thirds of the total impact. The relatively few trips beyond 100 km contribute more than half of the total impact because of the trip distance and use of aircraft. Individual behavioral changes, like shifting transport modes or reducing distance and frequency, can lead to useful emission reductions. However, a comprehensive package of mitigation options is necessary for deep and sustained emission reductions

    Simple emission metrics for climate impacts

    Get PDF
    In the context of climate change, emissions of different species (e.g., carbon dioxide and methane) are not directly comparable since they have different radiative efficiencies and lifetimes. Since comparisons via detailed climate models are computationally expensive and complex, emission metrics were developed to allow a simple and straightforward comparison of the estimated climate impacts of emissions of different species. Emission metrics are not unique and variety of different emission metrics has been proposed, with key choices being the climate impacts and time horizon to use for comparisons. In this paper, we present analytical expressions and describe how to calculate common emission metrics for different species. We include the climate metrics radiative forcing, integrated radiative forcing, temperature change and integrated temperature change in both absolute form and normalised to a reference gas. We consider pulse emissions, sustained emissions and emission scenarios. The species are separated into three types: CO<sub>2</sub> which has a complex decay over time, species with a simple exponential decay, and ozone precursors (NO<sub>x</sub>, CO, VOC) which indirectly effect climate via various chemical interactions. We also discuss deriving Impulse Response Functions, radiative efficiency, regional dependencies, consistency within and between metrics and uncertainties. We perform various applications to highlight key applications of emission metrics, which show that emissions of CO<sub>2</sub> are important regardless of what metric and time horizon is used, but that the importance of short lived climate forcers varies greatly depending on the metric choices made. Further, the ranking of countries by emissions changes very little with different metrics despite large differences in metric values, except for the shortest time horizons (GWP20)
    corecore