233 research outputs found
Short-Term Long Chain Omega3 Diet Protects from Neuroinflammatory Processes and Memory Impairment in Aged Mice
Regular consumption of food enriched in omega3 polyunsaturated fatty acids (Ï3 PUFAs) has been shown to reduce risk of cognitive decline in elderly, and possibly development of Alzheimer's disease. Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are the most likely active components of Ï3-rich PUFAs diets in the brain. We therefore hypothesized that exposing mice to a DHA and EPA enriched diet may reduce neuroinflammation and protect against memory impairment in aged mice. For this purpose, mice were exposed to a control diet throughout life and were further submitted to a diet enriched in EPA and DHA during 2 additional months. Cytokine expression together with a thorough analysis of astrocytes morphology assessed by a 3D reconstruction was measured in the hippocampus of young (3-month-old) and aged (22-month-old) mice. In addition, the effects of EPA and DHA on spatial memory and associated Fos activation in the hippocampus were assessed. We showed that a 2-month EPA/DHA treatment increased these long-chain Ï3 PUFAs in the brain, prevented cytokines expression and astrocytes morphology changes in the hippocampus and restored spatial memory deficits and Fos-associated activation in the hippocampus of aged mice. Collectively, these data indicated that diet-induced accumulation of EPA and DHA in the brain protects against neuroinflammation and cognitive impairment linked to aging, further reinforcing the idea that increased EPA and DHA intake may provide protection to the brain of aged subjects
Skills Alignment for Lifelong Learners in Higher Education: Smart Catalogues for Reskilling and Upskilling Pathways
The future of work and the ever-changing skills demand in the labour market has been a constant debate and pressing challenge for higher education institutions (HEIâs), governments and industry. In the current context, HEIâs must increase the transformational effect of education on peopleâs employability, on organizationsâ competitiveness and on societyâs progress. This paper presents the design and development of a mock-up career guidance tool to empower lifelong learners through digital reskilling and upskilling. We discuss the methods used for designing a skills alignment tool and a smart catalogue for identifying stackable training pathways in two specific disciplinary domains. The skills alignment methodology features a skill gap analysis (SGA) in the occupational domains of Data Science and Chemistry, linked to the evolution and demand of the European labour market through an ESCO compatible tool. The smart program catalog presents the necessary program information to facilitate the creation of stackable training pathways. Considerations are made for the importance of virtual career guidance tools for lifelong learners as we face the ever-changing demand of the labor market and as we continue to embrace online education, micro-credentialing and the digital transformation of higher education
Detecting Selection in the HIV-1 Genome during Sexual Transmission Events
Little is known about whether and how variation in the HIV-1 genome affects its transmissibility. Assessing which genomic features of HIV-1 are under positive or negative selection during transmission is challenging, because very few virus particles are typically transmitted, and random genetic drift can dilute genetic signals in the recipient virus population. We analyzed 30 transmitter-recipient pairs from the Zurich Primary HIV Infection Study and the Swiss HIV Cohort Study using near full-length HIV-1 genomes. We developed a new statistical test to detect selection during transmission, called Selection Test in Transmission (SeTesT), based on comparing the transmitter and recipient virus population and accounting for the transmission bottleneck. We performed extensive simulations and found that sensitivity of detecting selection during transmission is limited by the strong population bottleneck of few transmitted virions. When pooling individual test results across patients, we found two candidate HIV-1 genomic features for affecting transmission, namely amino acid positions 3 and 18 of Vpu, which were significant before but not after correction for multiple testing. In summary, SeTesT provides a general framework for detecting selection based on genomic sequencing data of transmitted viruses. Our study shows that a higher number of transmitter-recipient pairs is required to improve sensitivity of detecting selection
Dietary LongâChain nâ3 Polyunsaturated Fatty Acid Supplementation Alters Electrophysiological Properties in the Nucleus Accumbens and Emotional Behavior in NaĂŻve and Chronically Stressed Mice
Longâchain (LC) nâ3 polyunsaturated fatty acids (PUFAs) have drawn attention in the field of neuropsychiatric disorders, in particular depression. However, whether dietary supplementation with LC nâ3 PUFA protects from the development of mood disorders is still a matter of de-bate. In the present study, we studied the effect of a twoâmonth exposure to isocaloric diets containing nâ3 PUFAs in the form of relatively shortâchain (SC) (6% of rapeseed oil, enriched in αâlinolenic acid (ALA)) or LC (6% of tuna oil, enriched in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) PUFAs on behavior and synaptic plasticity of mice submitted or not to a chronic social defeat stress (CSDS), previously reported to alter emotional and social behavior, as well as synaptic plasticity in the nucleus accumbens (NAc). First, fatty acid content and lipid metabolism gene expression were measured in the NAc of mice fed a SC (control) or LC nâ3 (supplemented) PUFA diet. Our results indicate that LC nâ3 supplementation significantly increased some nâ3 PUFAs, while decreasing some nâ6 PUFAs. Then, in another cohort, control and nâ3 PUFAâsupplemented mice were subjected to CSDS, and social and emotional behaviors were assessed, together with longâterm depression plasticity in accumbal medium spiny neurons. Overall, mice fed with nâ3 PUFA supple-mentation displayed an emotional behavior profile and electrophysiological properties of medium spiny neurons which was distinct from the ones displayed by mice fed with the control diet, and this, independently of CSDS. Using the social interaction index to discriminate resilient and suscep-tible mice in the CSDS groups, nâ3 supplementation promoted resiliency. Altogether, our results pinpoint that exposure to a diet rich in LC nâ3 PUFA, as compared to a diet rich in SC nâ3 PUFA, influences the NAc fatty acid profile. In addition, electrophysiological properties and emotional behavior were altered in LC nâ3 PUFA mice, independently of CSDS. Our results bring new insights about the effect of LC nâ3 PUFA on emotional behavior and synaptic plasticity. © 2022 by the authors. Licensee MDPI, Basel, Switzerland
Mice prenatally exposed to valproic acid do not show autism-related disorders when fed with polyunsaturated fatty acid-enriched diets
AbstractDietary supplementations with n-3 polyunsaturated fatty acid (PUFA) have been explored in autism spectrum disorder (ASD) but their efficiency and potential in ameliorating cardinal symptoms of the disease remain elusive. Here, we compared a n-3 long-chain (LC) PUFA dietary supplementation (n-3 supp) obtained from fatty fish with a n-3 PUFA precursor diet (n-3 bal) obtained from plant oils in the valproic acid (VPA, 450 mg/kg at E12.5) ASD mouse model starting from embryonic life, throughout lactation and until adulthood. Maternal and offspring behaviors were investigated as well as several VPA-induced ASD biological features: cerebellar Purkinje cell (PC) number, inflammatory markers, gut microbiota, and peripheral and brain PUFA composition. Developmental milestones were delayed in the n-3 supp group compared to the n-3 bal group in both sexes. Whatever the diet, VPA-exposed offspring did not show ASD characteristic alterations in social behavior, stereotypies, PC number, or gut microbiota dysbiosis while global activity, gait, peripheral and brain PUFA levels as well as cerebellar TNF-alpha levels were differentially altered by diet and treatment according to sex. The current study provides evidence of beneficial effects of n-3 PUFA based diets, including one without LCPUFAs, on preventing several behavioral and cellular symptoms related to ASD
Tracing HIV-1 transmission: envelope traits of HIV-1 transmitter and recipient pairs.
Mucosal HIV-1 transmission predominantly results in a single transmitted/founder (T/F) virus establishing infection in the new host despite the generally high genetic diversity of the transmitter virus population. To what extent HIV-1 transmission is a stochastic process or driven by selective forces that allow T/F viruses best to overcome bottlenecks in transmission has not been conclusively resolved. Building on prior investigations that suggest HIV-1 envelope (Env) features to contribute in the selection process during transmission, we compared phenotypic virus characteristics of nine HIV-1 subtype B transmission pairs, six men who have sex with men and three male-to-female transmission pairs.
All recipients were identified early in acute infection and harbored based on extensive sequencing analysis a single T/F virus allowing a controlled analysis of virus properties in matched transmission pairs. Recipient and transmitter viruses from the closest time point to transmission showed no signs of selection for specific Env modifications such as variable loop length and glycosylation. Recipient viruses were resistant to circulating plasma antibodies of the transmitter and also showed no altered sensitivity to a large panel of entry inhibitors and neutralizing antibodies. The recipient virus did not consistently differ from the transmitter virus in terms of entry kinetics, cell-cell transmission and replicative capacity in primary cells. Our paired analysis revealed a higher sensitivity of several recipient virus isolates to interferon-α (IFNα) which suggests that resistance to IFNα cannot be a general driving force in T/F establishment.
With the exception of increased IFNα sensitivity, none of the phenotypic virus properties we investigated clearly distinguished T/F viruses from their matched transmitter viruses supporting the notion that at least in subtype B infection HIV-1 transmission is to a considerable extent stochastic
WNT11, a new gene associated with early-onset osteoporosis, is required for osteoblastogenesis.
Monogenic early-onset osteoporosis (EOOP) is a rare disease defined by low bone mineral density (BMD) that results in increased risk of fracture in children and young adults. Although several causative genes have been identified, some of the EOOP causation remains unresolved. Whole-exome sequencing revealed a de novo heterozygous loss-of-function mutation in WNT11 (NM_004626.2:c.677_678dup p.Leu227Glyfs*22) in a 4-year-old boy with low BMD and fractures. We identified two heterozygous WNT11 missense variants (NM_004626.2:c.217Gâ>âA p.Ala73Thr) and (NM_004626.2:c.865Gâ>âA p.Val289Met) in a 51-year-old woman and in a 61-year-old woman respectively, both with bone fragility. U2OS cells with heterozygous WNT11 mutation (NM_004626.2:c.690_721delfs*40) generated by CRISPR-Cas9 showed reduced cell proliferation (30%) and osteoblast differentiation (80%) as compared with wild-type U2OS cells. The expression of genes in the Wnt canonical and non-canonical pathways was inhibited in these mutant cells, but recombinant WNT11 treatment rescued the expression of Wnt pathway target genes. Furthermore, the expression of RSPO2, a WNT11 target involved in bone cell differentiation, and its receptor LGR5, was decreased in WNT11 mutant cells. Treatment with WNT5A and WNT11 recombinant proteins reversed LGR5 expression, but WNT3A recombinant protein treatment had no effect on LGR5 expression in mutant cells. Moreover, treatment with recombinant RSPO2 but not WNT11 or WNT3A activated the canonical pathway in mutant cells. In conclusion, we have identified WNT11 as a new gene responsible for EOOP, with loss-of-function variant inhibiting bone formation via Wnt canonical and non-canonical pathways. WNT11 may activate Wnt signaling by inducing the RSPO2-LGR5 complex via the non-canonical Wnt pathway
Characterization of Macrophages and Osteoclasts in the Osteosarcoma Tumor Microenvironment at Diagnosis: New Perspective for Osteosarcoma Treatment?
Biological and histopathological techniques identified osteoclasts and macrophages as targets of zoledronic acid (ZA), a therapeutic agent that was detrimental for patients in the French OS2006 trial. Conventional and multiplex immunohistochemistry of microenvironmental and OS cells were performed on biopsies of 124 OS2006 patients and 17 surgical (âOSNewâ) biopsies respectively. CSF-1R (common osteoclast/macrophage progenitor) and TRAP (osteoclast activity) levels in serum of 108 patients were correlated to response to chemotherapy and to prognosis. TRAP levels at surgery and at the end of the protocol were significantly lower in ZA+ than ZAâ patients (padj = 0.0011; 0.0132). For ZA+-patients, an increase in the CSF-1R level between diagnosis and surgery and a high TRAP level in the serum at biopsy were associated with a better response to chemotherapy (p = 0.0091; p = 0.0251). At diagnosis, high CD163+ was associated with good prognosis, while low TRAP activity was associated with better overall survival in ZAâ patients only. Multiplex immunohistochemistry demonstrated remarkable bipotent CD68+/CD163+ macrophages, homogeneously distributed throughout OS regions, aside osteoclasts (CD68+/CD163â) mostly residing in osteolytic territories and osteoid-matrix-associated CD68â/CD163+ macrophages. We demonstrate that ZA not only acts on harmful osteoclasts but also on protective macrophages, and hypothesize that the bipotent CD68+/CD163+ macrophages might present novel therapeutic targets
Essential omega-3 fatty acids tune microglial phagocytosis of synaptic elements in the mouse developing brain
AbstractOmega-3 fatty acids (n-3 PUFAs) are essential for the functional maturation of the brain. Westernization of dietary habits in both developed and developing countries is accompanied by a progressive reduction in dietary intake of n-3 PUFAs. Low maternal intake of n-3 PUFAs has been linked to neurodevelopmental diseases in Humans. However, the n-3 PUFAs deficiency-mediated mechanisms affecting the development of the central nervous system are poorly understood. Active microglial engulfment of synapses regulates brain development. Impaired synaptic pruning is associated with several neurodevelopmental disorders. Here, we identify a molecular mechanism for detrimental effects of low maternal n-3 PUFA intake on hippocampal development in mice. Our results show that maternal dietary n-3 PUFA deficiency increases microglia-mediated phagocytosis of synaptic elements in the rodent developing hippocampus, partly through the activation of 12/15-lipoxygenase (LOX)/12-HETE signaling, altering neuronal morphology and affecting cognitive performance of the offspring. These findings provide a mechanistic insight into neurodevelopmental defects caused by maternal n-3 PUFAs dietary deficiency.Infrastructure de Recherche Translationnelle pour les BiothĂ©rapies en NeurosciencesProgram Initiative dâExcellenc
- âŠ