127 research outputs found

    Unsupervised clustering of wildlife necropsy data for syndromic surveillance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of wildlife disease surveillance is increasing, because wild animals are playing a growing role as sources of emerging infectious disease events in humans. Syndromic surveillance methods have been developed as a complement to traditional health data analyses, to allow the early detection of unusual health events. Early detection of these events in wildlife could help to protect the health of domestic animals or humans. This paper aims to define syndromes that could be used for the syndromic surveillance of wildlife health data. Wildlife disease monitoring in France, from 1986 onward, has allowed numerous diagnostic data to be collected from wild animals found dead. The authors wanted to identify distinct pathological profiles from these historical data by a global analysis of the registered necropsy descriptions, and discuss how these profiles can be used to define syndromes. In view of the multiplicity and heterogeneity of the available information, the authors suggest constructing syndromic classes by a multivariate statistical analysis and classification procedure grouping cases that share similar pathological characteristics.</p> <p>Results</p> <p>A three-step procedure was applied: first, a multiple correspondence analysis was performed on necropsy data to reduce them to their principal components. Then hierarchical ascendant clustering was used to partition the data. Finally the k-means algorithm was applied to strengthen the partitioning. Nine clusters were identified: three were species- and disease-specific, three were suggestive of specific pathological conditions but not species-specific, two covered a broader pathological condition and one was miscellaneous. The clusters reflected the most distinct and most frequent disease entities on which the surveillance network focused. They could be used to define distinct syndromes characterised by specific post-mortem findings.</p> <p>Conclusions</p> <p>The chosen statistical clustering method was found to be a useful tool to retrospectively group cases from our database into distinct and meaningful pathological entities. Syndrome definition from post-mortem findings is potentially useful for early outbreak detection because it uses the earliest available information on disease in wildlife. Furthermore, the proposed typology allows each case to be attributed to a syndrome, thus enabling the exhaustive surveillance of health events through time series analyses.</p

    PCR detection and analyzis of potentially zoonotic Hepatitis E virus in French rats

    Get PDF
    BACKGROUND: Hepatitis E virus has been detected in a wide range of animals. While Genotypes 1-2 of this virus infect only humans, 3-4 can spread from animals to humans and cause sporadic cases of human disease. Pig, and possibly also rats, may act as a reservoir for virus. From a public health perspective it is important to clarify the role of rats for infection of humans. Rats often live close to humans and are therefore of special interest to public health. Rats live of waste and inside the sewage system and may become infected. Reports of hepatitis E virus in rats have been published but not from France. The possibility that rats in an urban area in France were Hepatitis E virus infected, with which type and relationship to other strains was investigated. This study provides information important to public health and better understanding the occurrence of hepatitis E virus in the environment. Eighty one rats (Rattus Norvegicus) were captured, euthanized, sampled (liver and faeces) and analyzed by real-time RT-PCR’s, one specific for Hepatitis E virus in rats and one specific for genotype 1-4 that that is known to infect humans. Positive samples were analyzed by a nested broad spectrum RT-PCR, sequenced and compared with sequences in Genbank. FINDINGS: Twelve liver and 11 faeces samples out of 81 liver and 81 faeces samples from 81 captured rats were positive in the PCR specific for Hepatitis E virus in rats and none in the PCR specific for genotype 1-4. Comparison by nucleotide BLAST showed a maximum of 87% similarity to Hepatitis E virus previously detected in rats and significantly less to genotype 1-4. CONCLUSIONS: This is the first study demonstrating that rats in France carries hepatitis E virus and provide information regarding its relation to other virus strains previously detected in rats and other host animals world-wide. Genotype 1-4 was not detected

    Wildlife biosurveillance

    Get PDF
    The objective of wildlife biosurveillance is to detect health-related events potentially harmful for wild animals, man or domestic animals. Three complementary approaches could be developed to overcome the specific constraints associated with the surveillance of wildlife: monitoring based on a risk analysis, monitoring of sentinel animals and syndromic surveillance. Furthermore, the official notification of pathogens identified through such programmes should be redefined, to encourage countries to exchange information while protecting them against unjustified consequences of such notifications.La biosurveillance de la faune sauvage vise à appliquer à celle-ci une surveillance adaptée qui permettrait de mettre en évidence des phénomènes de santé potentiellement délétères pour celle-ci ou pour la santé de l'Homme ou des animaux domestiques. Compte tenu des contraintes particulières liées à la surveillance de ces animaux, trois approches complémentaires pourraient être développées: une surveillance basée sur une analyse de risque, une surveillance d'animaux sentinelles et une surveillance syndromique. Par ailleurs, la notification officielle d'agents pathogènes découlant de la surveillance sanitaire de la faune sauvage devrait être redéfinie, afin d'encourager l'échange d'informations entre les États, tout en les garantissant contre des conséquences injustifiées d'une telle déclaration

    Prioritisation of wildlife pathogens to be targeted in European surveillance programmes: expert-based risk analysis focus on ruminants

    Get PDF
    This study attempted to develop a list of priority pathogens. It is part of a European Union (EU) project dedicated to the surveillance of emerging or re-emerging pathogens of wildlife. Partners of the consortium established an initial list of 138 pathogens of concern, which was reduced to a smaller list of 65 pathogens likely to affect ruminants (i.e., the most costly animal group in the EU over the last 15 years). These 65 pathogens underwent a two-step, expert-based risk analysis: 92 experts graded them with respect to their global importance for animal welfare, species conservation, trade/economic impacts and public health. In step 2, the top 15 pathogens from step 1 were assessed by 69 experts considering seven weighted epidemiological criteria (pathogen variability, host specificity, potential for contagion, speed of spread, presence in Europe, difficulty of surveillance in wildlife and persistence in the environment) for which four options were possible. The responses concerned a wide geographic coverage. The resulting top-list pathogens were ranked as follows: 1. Salmonella enterica, 2. Coxiella burnetii, 3. foot-and-mouth disease virus, 4. Mycobacterium bovis, 5. bluetongue virus, and 6. European tick-borne encephalitis virus. The influence of the characteristics of the respondents, the importance of the levels of uncertainty/variability and the implication of the results are discussed. This work highlights the relevance of developing such lists for preparedness

    Emerging diseases of wildlife in Europe : Lessons to draw to prevent a resurgence of avian influenza

    Get PDF
    The incursion of Highly Pathogenic Avian Influenza among wildfowl in Europe in 2006 was a new illustration of the health risk presented by wildlife to humans and domestic animals. To help anticipate similar incursions and avoid the pitfalls of poor communication, this paper describes how this risk was analysed and managed in the past for other wildlife diseases in Europe. The author also proposes a general methodology to anticipate such events.La contamination de l'avifaune sauvage en Europe, en 2006, par des foyers d'Influenza Aviaire Hautement Pathogène (IAHP) a été une nouvelle illustration du risque sanitaire que représente la faune sauvage pour l'homme ou les animaux domestiques. Afin de mieux anticiper des incursions similaires et éviter les dérives liées à une communication mal conduite, cet article décrit la façon dont le risque a été étudié et géré dans le passé pour d'autres maladies de la faune sauvage en Europe. L'auteur propose aussi une méthodologie générale pour anticiper de tels événements

    Crossing the Interspecies Barrier: Opening the Door to Zoonotic Pathogens

    Get PDF
    The number of pathogens known to infect humans is ever increasing. Whether such increase reflects improved surveillance and detection or actual emergence of novel pathogens is unclear. Nonetheless, infectious diseases are the second leading cause of human mortality and disability-adjusted life years lost worldwide [1], [2]. On average, three to four new pathogen species are detected in the human population every year [3]. Most of these emerging pathogens originate from nonhuman animal species

    Multi-host disease management: the why and the how to include wildlife

    Get PDF
    <p>In recent years, outbreaks caused by multi-host pathogens (MHP) have posed a serious challenge to public and animal health authorities. The frequent implication of wildlife in such disease systems and a lack of guidelines for mitigating these diseases within wild animal populations partially explain why the outbreaks are particularly challenging. To face these challenges, the French Ministry of Agriculture launched a multi-disciplinary group of experts that set out to discuss the main wildlife specific concepts in the management of MHP disease outbreaks and how to integrate wildlife in the disease management process. This position paper structures the primary specific concepts of wildlife disease management, as identified by the working group. It is designed to lay out these concepts for a wide audience of public and/or animal health officers who are not necessarily familiar with wildlife diseases. The group's discussions generated a possible roadmap for the management of MHP diseases. This roadmap is presented as a cycle for which the main successive step are: step 1-descriptive studies and monitoring; step 2-risk assessment; step 3-management goals; step 4-management actions and step 5-assessment of the management plan. In order to help choose the most adapted management actions for all involved epidemiological units, we integrated a decision-making framework (presented as a spreadsheet). This tool and the corresponding guidelines for disease management are designed to be used by public and health authorities when facing MHP disease outbreaks. These proposals are meant as an initial step towards a harmonized transboundary outbreak response framework that integrates current scientific understanding adapted to practical intervention.</p

    Use of wild bird surveillance, human case data and GIS spatial analysis for predicting spatial distributions of West Nile Virus in Greece

    Get PDF
    West Nile Virus (WNV) is the causative agent of a vector-borne, zoonotic disease with a worldwide distribution. Recent expansion and introduction of WNV into new areas, including southern Europe, has been associated with severe disease in humans and equids, and has increased concerns regarding the need to prevent and control future WNV outbreaks. Since 2010, 524 confirmed human cases of the disease have been reported in Greece with greater than 10% mortality. Infected mosquitoes, wild birds, equids, and chickens have been detected and associated with human disease. The aim of our study was to establish a monitoring system with wild birds and reported human cases data using Geographical Information System (GIS). Potential distribution of WNV was modelled by combining wild bird serological surveillance data with environmental factors (e.g. elevation, slope, land use, vegetation density, temperature, precipitation indices, and population density). Local factors including areas of low altitude and proximity to water were important predictors of appearance of both human and wild bird cases (Odds Ratio = 1,001 95%CI = 0,723–1,386). Using GIS analysis, the identified risk factors were applied across Greece identifying the northern part of Greece (Macedonia, Thrace) western Greece and a number of Greek islands as being at highest risk of future outbreaks. The results of the analysis were evaluated and confirmed using the 161 reported human cases of the 2012 outbreak predicting correctly (Odds = 130/31 = 4,194 95%CI = 2,841–6,189) and more areas were identified for potential dispersion in the following years. Our approach verified that WNV risk can be modelled in a fast cost-effective way indicating high risk areas where prevention measures should be implemented in order to reduce the disease incidence

    The Magnitude of Global Marine Species Diversity

    Get PDF
    Background: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered. Results: There are ∼226,000 eukaryotic marine species described. More species were described in the past decade (∼20,000) than in any previous one. The number of authors describing new species has been increasing at a faster rate than the number of new species described in the past six decades. We report that there are ∼170,000 synonyms, that 58,000–72,000 species are collected but not yet described, and that 482,000–741,000 more species have yet to be sampled. Molecular methods may add tens of thousands of cryptic species. Thus, there may be 0.7–1.0 million marine species. Past rates of description of new species indicate there may be 0.5 ± 0.2 million marine species. On average 37% (median 31%) of species in over 100 recent field studies around the world might be new to science. Conclusions: Currently, between one-third and two-thirds of marine species may be undescribed, and previous estimates of there being well over one million marine species appear highly unlikely. More species than ever before are being described annually by an increasing number of authors. If the current trend continues, most species will be discovered this century
    • …
    corecore