18 research outputs found

    Varicellovirus UL49.5 Proteins Differentially Affect the Function of the Transporter Associated with Antigen Processing, TAP

    Get PDF
    Cytotoxic T-lymphocytes play an important role in the protection against viral infections, which they detect through the recognition of virus-derived peptides, presented in the context of MHC class I molecules at the surface of the infected cell. The transporter associated with antigen processing (TAP) plays an essential role in MHC class I–restricted antigen presentation, as TAP imports peptides into the ER, where peptide loading of MHC class I molecules takes place. In this study, the UL49.5 proteins of the varicelloviruses bovine herpesvirus 1 (BHV-1), pseudorabies virus (PRV), and equine herpesvirus 1 and 4 (EHV-1 and EHV-4) are characterized as members of a novel class of viral immune evasion proteins. These UL49.5 proteins interfere with MHC class I antigen presentation by blocking the supply of antigenic peptides through inhibition of TAP. BHV-1, PRV, and EHV-1 recombinant viruses lacking UL49.5 no longer interfere with peptide transport. Combined with the observation that the individually expressed UL49.5 proteins block TAP as well, these data indicate that UL49.5 is the viral factor that is both necessary and sufficient to abolish TAP function during productive infection by these viruses. The mechanisms through which the UL49.5 proteins of BHV-1, PRV, EHV-1, and EHV-4 block TAP exhibit surprising diversity. BHV-1 UL49.5 targets TAP for proteasomal degradation, whereas EHV-1 and EHV-4 UL49.5 interfere with the binding of ATP to TAP. In contrast, TAP stability and ATP recruitment are not affected by PRV UL49.5, although it has the capacity to arrest the peptide transporter in a translocation-incompetent state, a property shared with the BHV-1 and EHV-1 UL49.5. Taken together, these results classify the UL49.5 gene products of BHV-1, PRV, EHV-1, and EHV-4 as members of a novel family of viral immune evasion proteins, inhibiting TAP through a variety of mechanisms

    Diagnosis and management of Silver–Russell syndrome: first international consensus statement

    Get PDF
    This Consensus Statement summarizes recommendations for clinical diagnosis, investigation and management of patients with Silver–Russell syndrome (SRS), an imprinting disorder that causes prenatal and postnatal growth retardation. Considerable overlap exists between the care of individuals born small for gestational age and those with SRS. However, many specific management issues exist and evidence from controlled trials remains limited. SRS is primarily a clinical diagnosis; however, molecular testing enables confirmation of the clinical diagnosis and defines the subtype. A 'normal' result from a molecular test does not exclude the diagnosis of SRS. The management of children with SRS requires an experienced, multidisciplinary approach. Specific issues include growth failure, severe feeding difficulties, gastrointestinal problems, hypoglycaemia, body asymmetry, scoliosis, motor and speech delay and psychosocial challenges. An early emphasis on adequate nutritional status is important, with awareness that rapid postnatal weight gain might lead to subsequent increased risk of metabolic disorders. The benefits of treating patients with SRS with growth hormone include improved body composition, motor development and appetite, reduced risk of hypoglycaemia and increased height. Clinicians should be aware of possible premature adrenarche, fairly early and rapid central puberty and insulin resistance. Treatment with gonadotropin-releasing hormone analogues can delay progression of central puberty and preserve adult height potential. Long-term follow up is essential to determine the natural history and optimal management in adulthood

    Personalizing health care: feasibility and future implications

    Get PDF
    Considerable variety in how patients respond to treatments, driven by differences in their geno- and/ or phenotypes, calls for a more tailored approach. This is already happening, and will accelerate with developments in personalized medicine. However, its promise has not always translated into improvements in patient care due to the complexities involved. There are also concerns that advice for tests has been reversed, current tests can be costly, there is fragmentation of funding of care, and companies may seek high prices for new targeted drugs. There is a need to integrate current knowledge from a payer’s perspective to provide future guidance. Multiple findings including general considerations; influence of pharmacogenomics on response and toxicity of drug therapies; value of biomarker tests; limitations and costs of tests; and potentially high acquisition costs of new targeted therapies help to give guidance on potential ways forward for all stakeholder groups. Overall, personalized medicine has the potential to revolutionize care. However, current challenges and concerns need to be addressed to enhance its uptake and funding to benefit patients
    corecore