5,404 research outputs found

    Thermodynamics of quantum crystalline membranes

    Get PDF
    We investigate the thermodynamic properties and the lattice stability of two-dimensional crystalline membranes, such as graphene and related compounds, in the low temperature quantum regime T0T\rightarrow0. A key role is played by the anharmonic coupling between in-plane and out-of plane lattice modes that, in the quantum limit, has very different consequences than in the classical regime. The role of retardation, namely of the frequency dependence, in the effective anharmonic interactions turns out to be crucial in the quantum regime. We identify a crossover temperature, TT^{*}, between classical and quantum regimes, which is 7090\sim 70 - 90 K for graphene. Below TT^{*}, the heat capacity and thermal expansion coefficient decrease as power laws with decreasing temperature, tending to zero for T0T\rightarrow0 as required by the third law of thermodynamics.Comment: 13 pages, 1 figur

    Reply to 'Comment on "Thermodynamics of quantum crystalline membranes"'

    Get PDF
    In this note, we reply to the comment made by E.I.Kats and V.V.Lebedev [arXiv:1407.4298] on our recent work "Thermodynamics of quantum crystalline membranes" [Phys. Rev. B 89, 224307 (2014)]. Kats and Lebedev question the validity of the calculation presented in our work, in particular on the use of a Debye momentum as a ultra-violet regulator for the theory. We address and counter argue the criticisms made by Kats and Lebedev to our work.Comment: 5 pages, 4 figure

    Characterization of a rare analphoid supernumerary marker chromosome in mosaic

    Get PDF
    Abstract publicado em: Chromosome Research. 2015;23(Suppl 1):67-8. doi:10.1007/s10577-015-9476-6Analphoid supernumerary marker chromosomes (SMCs) are a rare subclass of SMCs C-band-negative and devoid of alpha-satellite DNA. These marker chromosomes cannot be identified unambiguously by conventional banding techniques alone being necessary to apply molecular cytogenetic methods in favour of a detailed characterization. In this work we report an analphoid SMC involving the terminal long arm of chromosome 7, in 9 years-old boy with several dysmorphic features and severe development delay. Cytogenetic analysis revealed a mosaic karyotype with the presence of an extra SMC, de novo, in 20 % of lymphocytes and 73 % of fibroblast cells. FISH analysis with alpha-satellite probes for all chromosomes, whole chromosome painting probe for chromosome 7, and D7S427 and TelVysion 7q probes, allowed establishing the origin of the SMC as an analphoidmarker resulting of an invdup rearrangement of 7q36-qter region. Affimetrix CytoScan HD microarray analysis, redefined the SMC to arr[hg19] 7q35(143696249-159119707)×2~3, which correspond to a gain of 15.42 Mb and encloses 67 OMIM genes, 16 of which are associated to disease. This result, combined with detailed clinical description, will provide an important means for better genotype-phenotype correlation and a more suitable genetic counselling to the patient and his parents, despite the additional difficulty resulting from being a mosaic (expression varies in different tissues). Analphoid SMCs derived from chromosome 7 are very rare, with only three cases reported so far. With this case we hope contribute to a better understanding of this type of chromosome rearrangements which are difficult for genetic counselling

    The Hamiltonian BRST quantization of a noncommutative nonabelian gauge theory and its Seiberg-Witten map

    Full text link
    We consider the Hamiltonian BRST quantization of a noncommutative non abelian gauge theory. The Seiberg-Witten map of all phase-space variables, including multipliers, ghosts and their momenta, is given in first order in the noncommutative parameter θ\theta. We show that there exists a complete consistence between the gauge structures of the original and of the mapped theories, derived in a canonical way, once we appropriately choose the map solutions.Comment: 10 pages, Latex. Address adde

    On Coulomb drag in double layer systems

    Full text link
    We argue, for a wide class of systems including graphene, that in the low temperature, high density, large separation and strong screening limits the drag resistivity behaves as d^{-4}, where d is the separation between the two layers. The results are independent of the energy dispersion relation, the dependence on momentum of the transport time, and the wave function structure factors. We discuss how a correct treatment of the electron-electron interactions in an inhomogeneous dielectric background changes the theoretical analysis of the experimental drag results of Ref. [1]. We find that a quantitative understanding of the available experimental data [1] for drag in graphene is lacking.Comment: http://iopscience.iop.org/0953-8984/24/33/335602

    Evolutionary dynamics of the human pseudoautosomal regions

    Get PDF
    Recombination between the X and Y human sex chromosomes is limited to the two pseudoautosomal regions (PARs) that present quite distinct evolutionary origins. Despite the crucial importance for male meiosis, genetic diversity patterns and evolutionary dynamics of these regions are poorly understood. In the present study, we analyzed and compared the genetic diversity of the PAR regions using publicly available genomic sequences encompassing both PAR1 and PAR2. Comparisons were performed through allele diversities, linkage disequilibrium status and recombination frequencies within and between X and Y chromosomes. In agreement with previous studies, we confirmed the role of PAR1 as a male-specific recombination hotspot, but also observed similar characteristic patterns of diversity in both regions although male recombination occurs at PAR2 to a much lower extent (at least one recombination event at PAR1 and in ˜1% in normal male meioses at PAR2). Furthermore, we demonstrate that both PARs harbor significantly different allele frequencies between X and Y chromosomes, which could support that recombination is not sufficient to homogenize the pseudoautosomal gene pool or is counterbalanced by other evolutionary forces. Nevertheless, the observed patterns of diversity are not entirely explainable by sexually antagonistic selection. A better understanding of such processes requires new data from intergenerational transmission studies of PARs, which would be decisive on the elucidation of PARs evolution and their role in male-driven heterosomal aneuploidies.This work was supported by: - FEDER - Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 - Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020. - Fundação para a Ciência e a Tecnologia, in the framework of the Project POCI-01–0145-FEDER-007274 to i3S. - Fundação para a Ciência e a Tecnologia, in the PhD fellowship SFRH/BD/ 135612/2018 to B.M. - Ministerio de Ciencia, Innovación y Universidades, in the Grant “Ramón y Cajal” RYC-2015-18241 to M.A. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Evaluation of a Brazilian fuel alcohol yeast strain for Scotch whisky fermentations

    Get PDF
    Traditionally, distilling companies in Scotland have employed a very limited number of yeast strains in the production of alcohol for Scotch whiskies. Recent changes such as the decline in availability of brewers’ yeast as a secondary yeast strain and the availability of yeast in different formats (e.g., dried and cream yeast as alternatives to compressed yeast) have promoted interest in alternative Scotch whisky distilling yeasts. In previous work, we investigated different strains of yeasts, specifically Brazilian yeasts which had been isolated from and used in fuel alcohol distilleries. One of the Brazilian yeasts (CAT 1) showed a comparable fermentation performance and superior stress tolerance compared with a standard commercial Scotch whisky distilling yeast (M Type). The Brazilian CAT 1 yeast isolate was further assessed in laboratory scale fermentations and subsequent new make spirit was subjected to sensory analyses. The spirits produced using the Brazilian strain had acceptable flavour profiles and exhibited no sensory characteristics that were atypical of Scotch whisky new make spirit. This study highlights the potential of exploiting yeast biodiversity in traditional Scotch whisky distillery fermentation processes
    corecore