1,287 research outputs found

    The Cauchy problems for Einstein metrics and parallel spinors

    Full text link
    We show that in the analytic category, given a Riemannian metric gg on a hypersurface M⊂ZM\subset \Z and a symmetric tensor WW on MM, the metric gg can be locally extended to a Riemannian Einstein metric on ZZ with second fundamental form WW, provided that gg and WW satisfy the constraints on MM imposed by the contracted Codazzi equations. We use this fact to study the Cauchy problem for metrics with parallel spinors in the real analytic category and give an affirmative answer to a question raised in B\"ar, Gauduchon, Moroianu (2005). We also answer negatively the corresponding questions in the smooth category.Comment: 28 pages; final versio

    Surgery and the spinorial tau-invariant

    Get PDF
    We associate to a compact spin manifold M a real-valued invariant \tau(M) by taking the supremum over all conformal classes over the infimum inside each conformal class of the first positive Dirac eigenvalue, normalized to volume 1. This invariant is a spinorial analogue of Schoen's σ\sigma-constant, also known as the smooth Yamabe number. We prove that if N is obtained from M by surgery of codimension at least 2, then τ(N)≄min⁥{τ(M),Λn}\tau(N) \geq \min\{\tau(M),\Lambda_n\} with Λn>0\Lambda_n>0. Various topological conclusions can be drawn, in particular that \tau is a spin-bordism invariant below Λn\Lambda_n. Below Λn\Lambda_n, the values of τ\tau cannot accumulate from above when varied over all manifolds of a fixed dimension.Comment: to appear in CPD

    The Dirac operator on generalized Taub-NUT spaces

    Full text link
    We find sufficient conditions for the absence of harmonic L2L^2 spinors on spin manifolds constructed as cone bundles over a compact K\"ahler base. These conditions are fulfilled for certain perturbations of the Euclidean metric, and also for the generalized Taub-NUT metrics of Iwai-Katayama, thus proving a conjecture of Vi\csinescu and the second author.Comment: Final version, 16 page

    The Ammann-Beenker tilings revisited

    Full text link
    This paper introduces two tiles whose tilings form a one-parameter family of tilings which can all be seen as digitization of two-dimensional planes in the four-dimensional Euclidean space. This family contains the Ammann-Beenker tilings as the solution of a simple optimization problem.Comment: 7 pages, 4 figure

    Regularity for eigenfunctions of Schr\"odinger operators

    Full text link
    We prove a regularity result in weighted Sobolev spaces (or Babuska--Kondratiev spaces) for the eigenfunctions of a Schr\"odinger operator. More precisely, let K_{a}^{m}(\mathbb{R}^{3N}) be the weighted Sobolev space obtained by blowing up the set of singular points of the Coulomb type potential V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N} \frac{c_{ij}}{|x_i-x_j|}, x in \mathbb{R}^{3N}, b_j, c_{ij} in \mathbb{R}. If u in L^2(\mathbb{R}^{3N}) satisfies (-\Delta + V) u = \lambda u in distribution sense, then u belongs to K_{a}^{m} for all m \in \mathbb{Z}_+ and all a \le 0. Our result extends to the case when b_j and c_{ij} are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a<3/2.Comment: to appear in Lett. Math. Phy

    Invertible Dirac operators and handle attachments on manifolds with boundary

    Full text link
    For spin manifolds with boundary we consider Riemannian metrics which are product near the boundary and are such that the corresponding Dirac operator is invertible when half-infinite cylinders are attached at the boundary. The main result of this paper is that these properties of a metric can be preserved when the metric is extended over a handle of codimension at least two attached at the boundary. Applications of this result include the construction of non-isotopic metrics with invertible Dirac operator, and a concordance existence and classification theorem.Comment: Accepted for publication in Journal of Topology and Analysi

    A spinorial energy functional: critical points and gradient flow

    Full text link
    On the universal bundle of unit spinors we study a natural energy functional whose critical points, if dim M \geq 3, are precisely the pairs (g, {\phi}) consisting of a Ricci-flat Riemannian metric g together with a parallel g-spinor {\phi}. We investigate the basic properties of this functional and study its negative gradient flow, the so-called spinor flow. In particular, we prove short-time existence and uniqueness for this flow.Comment: Small changes, final versio

    Quantum Poincar\'e Recurrences

    Full text link
    We show that quantum effects modify the decay rate of Poincar\'e recurrences P(t) in classical chaotic systems with hierarchical structure of phase space. The exponent p of the algebraic decay P(t) ~ 1/t^p is shown to have the universal value p=1 due to tunneling and localization effects. Experimental evidence of such decay should be observable in mesoscopic systems and cold atoms.Comment: revtex, 4 pages, 4 figure

    Phase Control of Nonadiabaticity-induced Quantum Chaos in An Optical Lattice

    Get PDF
    The qualitative nature (i.e. integrable vs. chaotic) of the translational dynamics of a three-level atom in an optical lattice is shown to be controllable by varying the relative laser phase of two standing wave lasers. Control is explained in terms of the nonadiabatic transition between optical potentials and the corresponding regular to chaotic transition in mixed classical-quantum dynamics. The results are of interest to both areas of coherent control and quantum chaos.Comment: 3 figures, 4 pages, to appear in Physical Review Letter
    • 

    corecore