25,945 research outputs found
Magnetic behavior of lamellar mnps3 and cdps3 composites with a paramagnetic manganese(iii) macrocyclic guest
IndexaciĂłn: ScieloSix new composites derived from the intercalation of the MPS3 phases (M = MnII, CdIII) with the macrocyclic manganese(III) complex [MnL(H2O)2].NO3(H2O) (LH2 = Schiff base macrocyclic ligand derived from the condensation of 2-hydroxy-5-methy1-1,3-benzene-dicarbaldehyde and 1,2-diamine-benzene) were obtained by two different synthetic procedures: a conventional and a microwave assisted method. The composites [MnL]0.25K0.15Mn0.80 PS3(H2O)~1.0 (1), and [MnL]0.25K0.15Cd 0. 80PS3(H2O)~0.5 (2) were obtained by the conventional method, after stirring a suspension of the corresponding potassium precursor and the macrocyclic complex for two weeks, while [MnL]0.35K0.15Mn0.80 PS3(H2O)~1.0 (3) and [MnL]0.25K0.15Cd 0. 80PS3(H2O)~0.5 (4) after stirring for four weeks at room temperature. Using a microwave assisted reaction permitted to obtain in a shorter period of time as compared with the conventional method, composites [MnL]0.20K0.15Mn0.80 PS3(H2O)~1.0 (5) and [MnL]0.15K0.15Cd 0. 80PS3(H2O)~0.5 (6). All the M = MnII, MnIII composites show a bulk antiferromagnetic behavior. However, the spontaneous magnetization present at low temperature in the potassium precursor K0.40Mn0.80 PS3(H2O)~1.0 is observable in composite [MnL]0.20K0.15Mn0.80 PS3(H2O)~1.0 (5), while it is completely absent in composites [MnL]0.25K0.15Mn0.80 PS3(H2O)~1.0 (1) and [MnL]0.35K0.15Mn0.80 PS3(H2O)~1.0 (3).
Keywords: Intercalation; MPS3 phases; MnIII macrocyclic complex; microwave assisted synthesis; magnetic properties
Structure formation in the presence of relativistic heat conduction: corrections to the Jeans wave number with a stable first order in the gradients formalism
The problem of structure formation in relativistic dissipative fluids was
analyzed in a previous work within Eckart's framework, in which the heat flux
is coupled to the hydrodynamic acceleration, additional to the usual
temperature gradient term. It was shown that in such case, the pathological
behavior of fluctuations leads to the disapperance of the gravitational
instability responsible for structure formation. In the present work the
problem is revisited now using a constitutive equation derived from
relativistic kinetic theory. The new relation, in which the heat flux is not
coupled to the hydrodynamic acceleration, leads to a consistent first order in
the gradients formalism. In this case the gravitational instability remains,
and only relativistic corrections to the Jeans wave number are obtained. In the
calculation here shown the non-relativistc limit is recovered, opposite to what
happens in Eckart's case.Comment: 10 pages, no figure
Semiempirical Modeling of Reset Transitions in Unipolar Resistive-Switching based Memristors
We have measured the transition process from the high to low resistivity states, i.e., the reset process of resistive switching based memristors based on Ni/HfO2/Si-n+ structures, and have also developed an analytical model for their electrical characteristics. When the characteristic curves are plotted in the current-voltage (I-V) domain a high variability is observed. In spite of that, when the same curves are plotted in the charge-flux domain (Q-phi), they can be described by a simple model containing only three parameters: the charge (Qrst) and the flux (rst) at the reset point, and an exponent, n, relating the charge and the flux before the reset transition. The three parameters can be easily extracted from the Q-phi plots. There is a strong correlation between these three parameters, the origin of which is still under study
Changes in Attitude, Knowledge, and Use of ICTs During the Progression of an Online Research Master's Program
The objective of the research was to observe the evolution of attitude, knowledge, and use of ICT resources in students during the progression of the Research Masterâs degree in Teacher Training and ICTs in the Faculty of Education at the University of Extremadura. A total of 21 students from the Master's program participated. A concurrent triangulation mixed method was used, combining descriptive and inferential data analysis with content analysis, developing the quantitative and qualitative designs in parallel. Among the main conclusions obtained, it is noted that no statistically significant differences were observed in the attitude, knowledge, and use of ICT resources of the students between the beginning and the end of the Master's program. However, a positive correlation was found between knowledge and the use of ICT resources, both at the beginning and at the end of the Master's program. Moreover, it was found that not only do the students have a positive attitude and a medium knowledge with the use of ICT resources but also that the main problems in the teaching/learning process in the online Master's program are related to the teaching staff and organization
The affective profiles, psychological well-being, and harmony: environmental mastery and self-acceptance predict the sense of a harmonious life
Background. An important outcome from the debate on whether wellness equals happiness, is the need of research focusing on how psychological well-being might influence humans' ability to adapt to the changing environment and live in harmony. To get a detailed picture of the influence of positive and negative affect, the current study employed the affective profiles model in which individuals are categorised into groups based on either high positive and low negative affect (self-fulfilling); high positive and high negative affect (high affective); low positive and low negative affect (low affective); and high negative and low positive affect (self-destructive). The aims were to (1) investigate differences between affective profiles in psychological wellbeing and harmony and (2) how psychological well-being and its dimensions relate to harmony within the four affective profiles. Method. 500 participants (mean age D 34.14 years, SD. D 12.75 years; 187 males and 313 females) were recruited online and required to answer three self-report measures: The Positive Affect and Negative Affect Schedule; The Scales of Psychological Well-Being (short version) and The Harmony in Life Scale. We conducted a Multivariate Analysis of Variance where the affective profiles and gender were the independent factors and psychological well-being composite score, its six dimensions as well as the harmony in life score were the dependent factors. In addition, we conducted four multi-group (i.e., the four affective profiles) moderation analyses with the psychological well-being dimensions as predictors and harmony in life as the dependent variables. Results. Individuals categorised as self-fulfilling, as compared to the other profiles, tended to score higher on the psychological well-being dimensions: positive relations, environmental mastery, self-acceptance, autonomy, personal growth, and purpose in life. In addition, 47% to 66% of the variance of the harmony in life was explained by the dimensions of psychological well-being within the four affective profiles. Specifically, harmony in life was significantly predicted by environmental mastery and self-acceptance across all affective profiles. However, for the low affective group high purpose in life predicted low levels of harmony in life. Conclusions. The results demonstrated that affective profiles systematically relate to psychological well-being and harmony in life. Notably, individuals categorised as self-fulfilling tended to report higher levels of both psychological well-being and harmony in life when compared with the other profiles. Meanwhile individuals in the self-destructive group reported the lowest levels of psychological well-being and harmony when compared with the three other profiles. It is proposed that selfacceptance and environmental acceptance might enable individuals to go from selfdestructive to a self-fulfilling state that also involves harmony in life
Investigating the impact of reservoir properties and injection parameters on carbon dioxide dissolution in saline aquifers
CO2 injection into geological formations is considered one way of mitigating the increasing levels of carbon dioxide concentrations in the atmosphere and its effect on and global warming. In regard to sequestering carbon underground, different countries have conducted projects at commercial scale or pilot scale and some have plans to develop potential storage geological formations for carbon dioxide storage. In this study, pure CO2 injection is examined on a model with the properties of bunter sandstone and then sensitivity analyses were conducted for some of the fluid, rock and injection parameters. The results of this study show that the extent to which CO2 has been convected in the porous media in the reservoir plays a vital role in improving the CO2 dissolution in brine and safety of its long term storage. We conclude that heterogeneous permeability plays a crucial role on the saturation distribution and can increase or decrease the amount of dissolved CO2 in water around ± 7% after the injection stops and up to 13% after 120 years. Furthermore, the value of absolute permeability controls the effect of the Kv/Kh ratio on the CO2 dissolution in brine. In other words, as the value of vertical and horizontal permeability decreases (i.e., tight reservoirs) the impact of Kv/Kh ratio on the dissolved CO2 in brine becomes more prominent. Additionally, reservoir engineering parameters, such as well location, injection rate and scenarios, also have a high impact on the amount of dissolved CO2 and can change the dissolution up to 26%, 100% and 5.5%, respectively
Combination of common mtDNA variants results in mitochondrial dysfunction and a connective tissue dysregulation
Mitochondrial dysfunction can be associated with a range of clinical manifestations. Here, we report a family with a complex phenotype including combinations of connective tissue, neurological, and metabolic symptoms that were passed on to all surviving children. Analysis of the maternally inherited mtDNA revealed a novel genotype encompassing the haplogroup J - defining mitochondrial DNA (mtDNA
Cancer-associated histone H3 N-terminal arginine mutations disrupt PRC2 activity and impair differentiation
Dysregulated epigenetic states are a hallmark of cancer and often arise from genetic alterations in epigenetic regulators. This includes missense mutations in histones, which, together with associated DNA, form nucleosome core particles. However, the oncogenic mechanisms of most histone mutations are unknown. Here, we demonstrate that cancer-associated histone mutations at arginines in the histone H3 N-terminal tail disrupt repressive chromatin domains, alter gene regulation, and dysregulate differentiation. We find that histone H3R2C and R26C mutants reduce transcriptionally repressive H3K27me3. While H3K27me3 depletion in cells expressing these mutants is exclusively observed on the minor fraction of histone tails harboring the mutations, the same mutants recurrently disrupt broad H3K27me3 domains in the chromatin context, including near developmentally regulated promoters. H3K27me3 loss leads to de-repression of differentiation pathways, with concordant effects between H3R2 and H3R26 mutants despite different proximity to the PRC2 substrate, H3K27. Functionally, H3R26C-expressing mesenchymal progenitor cells and murine embryonic stem cell-derived teratomas demonstrate impaired differentiation. Collectively, these data show that cancer-associated H3 N-terminal arginine mutations reduce PRC2 activity and disrupt chromatin-dependent developmental functions, a cancer-relevant phenotype
- âŠ