2,729 research outputs found

    Podiatry services for patients with arthritis: an unmet need

    Get PDF
    Foot problems are extremely common in patients with rheumatoid arthritis (RA). There is ample evidence that foot pain, either alone or as a comorbidity, contributes significantly to disability. Despite the high prevalence of foot disease in RA, this problem is often trivialised or underappreciated. The inequity in foot health provision for patients with rheumatic disorders in New Zealand has recently been highlighted. Expertise in dealing with foot problems is often limited among healthcare professionals, and it has been argued that better integration of podiatric services into rheumatology services would be beneficial. The aim of this paper is to highlight the major issues related to foot care for patients with arthritis and provide key recommendations that should implemented to improve access to podiatric services in New Zealand

    Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae

    Full text link
    BACKGROUND: Gut microbiota affects tephritid (Diptera: Tephritidae) fruit fly development, physiology, behavior, and thus the quality of flies mass-reared for the sterile insect technique (SIT), a target-specific, sustainable, environmentally benign form of pest management. The Queensland fruit fly, Bactrocera tryoni (Tephritidae), is a significant horticultural pest in Australia and can be managed with SIT. Little is known about the impacts that laboratory-adaptation (domestication) and mass-rearing have on the tephritid larval gut microbiome. Read lengths of previous fruit fly next-generation sequencing (NGS) studies have limited the resolution of microbiome studies, and the diversity within populations is often overlooked. In this study, we used a new near full-length (> 1300 nt) 16S rRNA gene amplicon NGS approach to characterize gut bacterial communities of individual B. tryoni larvae from two field populations (developing in peaches) and three domesticated populations (mass- or laboratory-reared on artificial diets). RESULTS: Near full-length 16S rRNA gene sequences were obtained for 56 B. tryoni larvae. OTU clustering at 99% similarity revealed that gut bacterial diversity was low and significantly lower in domesticated larvae. Bacteria commonly associated with fruit (Acetobacteraceae, Enterobacteriaceae, and Leuconostocaceae) were detected in wild larvae, but were largely absent from domesticated larvae. However, Asaia, an acetic acid bacterium not frequently detected within adult tephritid species, was detected in larvae of both wild and domesticated populations (55 out of 56 larval gut samples). Larvae from the same single peach shared a similar gut bacterial profile, whereas larvae from different peaches collected from the same tree had different gut bacterial profiles. Clustering of the Asaia near full-length sequences at 100% similarity showed that the wild flies from different locations had different Asaia strains. CONCLUSIONS: Variation in the gut bacterial communities of B. tryoni larvae depends on diet, domestication, and horizontal acquisition. Bacterial variation in wild larvae suggests that more than one bacterial species can perform the same functional role; however, Asaia could be an important gut bacterium in larvae and warrants further study. A greater understanding of the functions of the bacteria detected in larvae could lead to increased fly quality and performance as part of the SIT

    Both rare and common species make unique contributions to functional diversity in an ecosystem unaffected by human activities

    Get PDF
    AIM: Rare species typically contribute more to functional diversity than common species. However, humans have altered the occupancy and abundance patterns of many species—the basis upon which we define “rarity.” Here, we use a globally unique dataset from hydrothermal vents—an untouched ecosystem—to test whether rare species over‐contribute to functional diversity. LOCATION: Juan de Fuca Ridge hydrothermal vent fields, Northeast Pacific Ocean. METHODS: We first conduct a comprehensive review to set up expectations for the relative contributions of rare and common species to functional diversity. We then quantify the rarity and commonness of 37 vent species with relevant trait information to assess the relationship between rarity and functional distinctiveness—a measure of the uniqueness of the traits of a species relative to traits of coexisting species. Next, we randomly assemble communities to test whether rare species over‐contribute to functional diversity in artificial assemblages ranging in species richness. Then, we test whether biotic interactions influence functional diversity contributions by comparing the observed contribution of each species to a null expectation. Finally, we identify traits driving functional distinctiveness using a distance‐based redundancy analysis. RESULTS: Across functional diversity metrics and species richness levels, we find that both rare and common species can contribute functional uniqueness. Some species always offer unique trait combinations, and these species host bacterial symbionts and provide habitat complexity. Moreover, we find that contributions of species to functional diversity may be influenced by biotic interactions. MAIN CONCLUSIONS: Our findings show that many common species make persistent, unique contributions to functional diversity. Thus, it is key to consider whether the abundance and occupancy of species have been reduced, relative to historical baselines, when interpreting the contributions of rare species to functional diversity. Our work highlights the importance of testing ecological theory in ecosystems unaffected by human activities for the conservation of biodiversity

    Whole Genome Sequencing Analysis of Porcine Faecal Commensal Escherichia coli Carrying Class 1 Integrons from Sows and Their Offspring.

    Full text link
    Intensive pig production systems often rely on the use of antimicrobials and heavy metal feed additives to maintain animal health and welfare. To gain insight into the carriage of antimicrobial resistance genes (ARGs) in the faecal flora of commercially reared healthy swine, we characterised the genome sequences of 117 porcine commensal E. coli that carried the class 1 integrase gene (intI1+). Isolates were sourced from 42 healthy sows and 126 of their offspring from a commercial breeding operation in Australia in 2017. intI1+ E. coli was detected in 28/42 (67%) sows and 90/126 (71%) piglets. Phylogroup A, particularly clonal complex 10, and phylogroup B1 featured prominently in the study collection. ST10, ST20, ST48 and ST361 were the dominant sequence types. Notably, 113/117 isolates (96%) carried three or more ARGs. Genes encoding resistance to -lactams, aminoglycosides, trimethoprim, sulphonamides, tetracyclines and heavy metals were dominant. ARGs encoding resistance to last-line agents, such as carbapenems and third generation cephalosporins, were not detected. IS26, an insertion sequence noted for its ability to capture and mobilise ARGs, was present in 108/117 (92%) intI1+ isolates, and it played a role in determining class 1 integron structure. Our data shows that healthy Australian pig faeces are an important reservoir of multidrug resistant E. coli that carry genes encoding resistance to multiple first-generation antibiotics and virulence-associated genes

    Comparative genomic analysis of a multiple antimicrobial resistant enterotoxigenic E. coli O157 lineage from Australian pigs

    Get PDF
    © 2015 Wyrsch et al. Background: Enterotoxigenic Escherichia coli (ETEC) are a major economic threat to pig production globally, with serogroups O8, O9, O45, O101, O138, O139, O141, O149 and O157 implicated as the leading diarrhoeal pathogens affecting pigs below four weeks of age. A multiple antimicrobial resistant ETEC O157 (O157 SvETEC) representative of O157 isolates from a pig farm in New South Wales, Australia that experienced repeated bouts of pre- and post-weaning diarrhoea resulting in multiple fatalities was characterized here. Enterohaemorrhagic E. coli (EHEC) O157:H7 cause both sporadic and widespread outbreaks of foodborne disease, predominantly have a ruminant origin and belong to the ST11 clonal complex. Here, for the first time, we conducted comparative genomic analyses of two epidemiologically-unrelated porcine, disease-causing ETEC O157; E. coli O157 SvETEC and E. coli O157:K88 734/3, and examined their phylogenetic relationship with EHEC O157:H7. Results: O157 SvETEC and O157:K88 734/3 belong to a novel sequence type (ST4245) that comprises part of the ST23 complex and are genetically distinct from EHEC O157. Comparative phylogenetic analysis using PhyloSift shows that E. coli O157 SvETEC and E. coli O157:K88 734/3 group into a single clade and are most similar to the extraintestinal avian pathogenic Escherichia coli (APEC) isolate O78 that clusters within the ST23 complex. Genome content was highly similar between E. coli O157 SvETEC, O157:K88 734/3 and APEC O78, with variability predominantly limited to laterally acquired elements, including prophages, plasmids and antimicrobial resistance gene loci. Putative ETEC virulence factors, including the toxins STb and LT and the K88 (F4) adhesin, were conserved between O157 SvETEC and O157:K88 734/3. The O157 SvETEC isolate also encoded the heat stable enterotoxin STa and a second allele of STb, whilst a prophage within O157:K88 734/3 encoded the serum survival gene bor. Both isolates harbor a large repertoire of antibiotic resistance genes but their association with mobile elements remains undetermined. Conclusions: We present an analysis of the first draft genome sequences of two epidemiologically-unrelated, pathogenic ETEC O157. E. coli O157 SvETEC and E. coli O157:K88 734/3 belong to the ST23 complex and are phylogenetically distinct to EHEC O157 lineages that reside within the ST11 complex

    Porcine commensal escherichia coli: A reservoir for class 1 integrons associated with IS26

    Full text link
    © 2017 The Authors. Porcine faecal waste is a serious environmental pollutant. Carriage of antimicrobial-resistance genes (ARGs) and virulenceassociated genes (VAGs), and the zoonotic potential of commensal Escherichia coli from swine are largely unknown. Furthermore, little is known about the role of commensal E. coli as contributors to the mobilization of ARGs between food animals and the environment. Here, we report whole-genome sequence analysis of 103 class 1 integron-positive E. coli from the faeces of healthy pigs from two commercial production facilities in New South Wales, Australia. Most strains belonged to phylogroups A and B1, and carried VAGs linked with extraintestinal infection in humans. The 103 strains belonged to 37 multilocus sequence types and clonal complex 10 featured prominently. Seventeen ARGs were detected and 97% (100/103) of strains carried three or more ARGs. Heavy-metal-resistance genes merA, cusA and terA were also common. IS26 was observed in 98% (101/103) of strains and was often physically associated with structurally diverse class 1 integrons that carried unique genetic features, which may be tracked. This study provides, to our knowledge, the first detailed genomic analysis and point of reference for commensal E. coli of porcine origin in Australia, facilitating tracking of specific lineages and the mobile resistance genes they carry

    A large-scale metagenomic survey dataset of the post-weaning piglet gut lumen

    Full text link
    BackgroundEarly weaning and intensive farming practices predispose piglets to the development of infectious and often lethal diseases, against which antibiotics are used. Besides contributing to the build-up of antimicrobial resistance, antibiotics are known to modulate the gut microbial composition. As an alternative to antibiotic treatment, studies have previously investigated the potential of probiotics for the prevention of postweaning diarrhea. In order to describe the post-weaning gut microbiota, and to study the effects of two probiotics formulations and of intramuscular antibiotic treatment on the gut microbiota, we sampled and processed over 800 faecal time-series samples from 126 piglets and 42 sows.ResultsHere we report on the largest shotgun metagenomic dataset of the pig gut lumen microbiome to date, consisting of >8 Tbp of shotgun metagenomic sequencing data. The animal trial, the workflow from sample collection to sample processing, and the preparation of libraries for sequencing, are described in detail. We provide a preliminary analysis of the dataset, centered on a taxonomic profiling of the samples, and a 16S-based beta diversity analysis of the mothers and the piglets in the first 5 weeks after weaning.ConclusionsThis study was conducted to generate a publicly available databank of the faecal metagenome of weaner piglets aged between 3 and 9 weeks old, treated with different probiotic formulations and intramuscular antibiotic treatment. Besides investigating the effects of the probiotic and intramuscular antibiotic treatment, the dataset can be explored to assess a wide range of ecological questions with regards to antimicrobial resistance, host-associated microbial and phage communities, and their dynamics during the aging of the host

    Microguards and micromessengers of the genome

    Get PDF
    The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as ‘transcription dynamics’. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term ‘microguarding’. An additional emerging role for miRNAs is as ‘micromessengers’—through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic

    Localization of neurones expressing the gap junction protein Connexin45 within the adult spinal dorsal horn: a study using Cx45-eGFP reporter mice.

    Get PDF
    Connexin (Cx) proteins localized to neuronal and glial syncytia provide the ultrastructural components for intercellular communication via gap junctions. In this study, a Cx45 reporter mouse model in which the Cx45 coding sequence is substituted for enhanced green fluorescent protein (eGFP) was used to characterize Cx45 expressing neurones within adult mouse spinal cord. eGFP-immunoreactive (eGFP-IR) cells were localized at all rostro-caudal levels to laminae I-III of the dorsal horn (DH), areas associated with nociception. The neuronal rather than glial phenotype of these cells in DH was confirmed by co-localisation of eGFP-IR with the neuronal marker NeuN. Further immunohistochemical studies revealed that eGFP-IR interneurones co-express the calcium-binding protein calbindin, and to a lesser extent calretinin. In contrast, eGFP-IR profiles did not co-localize with either parvalbumin or GAD-67, both of which are linked to inhibitory interneurones. Staining with the primary afferent markers isolectin-B4 (IB4) and calcitonin gene-related peptide revealed that eGFP-IR somata within laminae I-III receive close appositions from the former, presumed non-peptidergic nociceptive afferents of peripheral origin. The presence of 5-HT terminals in close apposition to eGFP-IR interneuronal somata suggests modulation via descending pathways. These data demonstrate a highly localized expression of Cx45 in a population of interneurones within the mouse superficial dorsal horn. The implications of these data in the context of the putative role of Cx45 and gap junctions in spinal somatosensory processing and pain are discussed
    • 

    corecore