190 research outputs found

    The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?

    Get PDF
    The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework

    Large-Scale Clonal Analysis Reveals Unexpected Complexity in Surface Ectoderm Morphogenesis

    Get PDF
    Background: Understanding the series of morphogenetic processes that underlie the making of embryo structures is a highly topical issue in developmental biology, essential for interpreting the massive molecular data currently available. In mouse embryo, long-term in vivo analysis of cell behaviours and movements is difficult because of the development in utero and the impossibility of long-term culture. Methodology/Principal Findings: We improved and combined two genetic methods of clonal analysis that together make practicable large-scale production of labelled clones. Using these methods we performed a clonal analysis of surface ectoderm (SE), a poorly understood structure, for a period that includes gastrulation and the establishment of the body plan. We show that SE formation starts with the definition at early gastrulation of a pool of founder cells that is already dorso-ventrally organized. This pool is then regionalized antero-posteriorly into three pools giving rise to head, trunk and tail. Each pool uses its own combination of cell rearrangements and mode of proliferation for elongation, despite a common clonal strategy that consists in disposing along the antero-posterior axis precursors of dorso-ventrally-oriented stripes of cells. Conclusions/Significance: We propose that these series of morphogenetic processes are organized temporally and spatially in a posterior zone of the embryo crucial for elongation. The variety of cell behaviours used by SE precursor cells indicates that these precursors are not equivalent, regardless of a common clonal origin and a common clonal strategy. Anothe

    Functional assessment of coronary artery flow using adenosine stress dual-energy CT: a preliminary study

    Get PDF
    We attempted to assess coronary artery flow using adenosine-stress and dual-energy mode with dual-source CT (DE-CT). Data of 18 patients with suspected coronary arteries disease who had undergone cardiac DE-CT were retrospectively analyzed. The patients were divided into two groups: 10 patients who performed adenosine stress CT, and 8 patients who performed rest CT as controls. We reconstructed an iodine map and composite images at 120 kV (120 kV images) using raw data with scan parameters of 100 and 140 kV. We measured mean attenuation in the coronary artery proximal to the distal portion on both the iodine map and 120 kV images. Coronary enhancement ratio (CER) was calculated by dividing mean attenuation in the coronary artery by attenuation in the aortic root, and was used as an estimate of coronary enhancement. Coronary stenosis was identified as a reduction in diameter of >50% on CT angiogram, and myocardial ischemia was diagnosed by adenosine-stress myocardial perfusion scintigraphy. The iodine map showed that CER was significantly lower for ischemic territories (0.76 ± 0.06) or stenosed coronary arteries (0.77 ± 0.06) than for non-ischemic territories (0.95 ± 0.21, P = 0.02) or non-stenosed coronary arteries (1.07 ± 0.33, P < 0.001). The 120 kV images showed no difference in CER between these two groups. Use of CER on the iodine map separated ischemic territories from non-ischemic territories with a sensitivity of 86% and a specificity of 75%. Our quantification is the first non-invasive analytical technique for assessment of coronary artery flow using cardiac CT. CER on the iodine map is a candidate method for demonstration of alteration in coronary artery flow under adenosine stress, which is related to the physiological significance of coronary artery disease

    Assessing genetic polymorphisms using DNA extracted from cells present in saliva samples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Technical advances following the Human Genome Project revealed that high-quality and -quantity DNA may be obtained from whole saliva samples. However, usability of previously collected samples and the effects of environmental conditions on the samples during collection have not been assessed in detail. In five studies we document the effects of sample volume, handling and storage conditions, type of collection device, and oral sampling location, on quantity, quality, and genetic assessment of DNA extracted from cells present in saliva.</p> <p>Methods</p> <p>Saliva samples were collected from ten adults in each study. Saliva volumes from .10-1.0 ml, different saliva collection devices, sampling locations in the mouth, room temperature storage, and multiple freeze-thaw cycles were tested. One representative single nucleotide polymorphism (SNP) in the catechol-<it>0</it>-methyltransferase gene (COMT rs4680) and one representative variable number of tandem repeats (VNTR) in the serotonin transporter gene (5-HTTLPR: serotonin transporter linked polymorphic region) were selected for genetic analyses.</p> <p>Results</p> <p>The smallest tested whole saliva volume of .10 ml yielded, on average, 1.43 ± .77 μg DNA and gave accurate genotype calls in both genetic analyses. The usage of collection devices reduced the amount of DNA extracted from the saliva filtrates compared to the whole saliva sample, as 54-92% of the DNA was retained on the device. An "adhered cell" extraction enabled recovery of this DNA and provided good quality and quantity DNA. The DNA from both the saliva filtrates and the adhered cell recovery provided accurate genotype calls. The effects of storage at room temperature (up to 5 days), repeated freeze-thaw cycles (up to 6 cycles), and oral sampling location on DNA extraction and on genetic analysis from saliva were negligible.</p> <p>Conclusions</p> <p>Whole saliva samples with volumes of at least .10 ml were sufficient to extract good quality and quantity DNA. Using 10 ng of DNA per genotyping reaction, the obtained samples can be used for more than one hundred candidate gene assays. When saliva is collected with an absorbent device, most of the nucleic acid content remains in the device, therefore it is advisable to collect the device separately for later genetic analyses.</p

    Prevalence of anatomical variants and coronary anomalies in 543 consecutive patients studied with 64-slice CT coronary angiography

    Get PDF
    The aim of our study was to assess the prevalence of variants and anomalies of the coronary artery tree in patients who underwent 64-slice computed tomography coronary angiography (CT-CA) for suspected or known coronary artery disease. A total of 543 patients (389 male, mean age 60.5 ± 10.9) were reviewed for coronary artery variants and anomalies including post-processing tools. The majority of segments were identified according to the American Heart Association scheme. The coronary dominance pattern results were: right, 86.6%; left, 9.2%; balanced, 4.2%. The left main coronary artery had a mean length of 112 ± 55 mm. The intermediate branch was present in the 21.9%. A variable number of diagonals (one, 25%; two, 49.7%; more than two, 24%; none, 1.3%) and marginals (one, 35.2%; two, 46.2%; more than two, 18%; none, 0.6%) was visualized. Furthermore, CT-CA may visualize smaller branches such as the conus branch artery (98%), the sinus node artery (91.6%), and the septal branches (93%). Single or associated coronary anomalies occurred in 18.4% of the patients, with the following distribution: 43 anomalies of origin and course, 68 intrinsic anomalies (59 myocardial bridging, nine aneurisms), three fistulas. In conclusion, 64-slice CT-CA provides optimal visualization of the variable and complex anatomy of coronary arteries because of the improved isotropic spatial resolution and flexible post-processing tool

    Global Metabolomic Profiling of Acute Myocarditis Caused by Trypanosoma cruzi Infection

    Get PDF
    © 2014 Gironès et al. Chagas disease is caused by Trypanosoma cruzi infection, being cardiomyopathy the more frequent manifestation. New chemotherapeutic drugs are needed but there are no good biomarkers for monitoring treatment efficacy. There is growing evidence linking immune response and metabolism in inflammatory processes and specifically in Chagas disease. Thus, some metabolites are able to enhance and/or inhibit the immune response. Metabolite levels found in the host during an ongoing infection could provide valuable information on the pathogenesis and/or identify deregulated metabolic pathway that can be potential candidates for treatment and being potential specific biomarkers of the disease. To gain more insight into those aspects in Chagas disease, we performed an unprecedented metabolomic analysis in heart and plasma of mice infected with T. cruzi. Many metabolic pathways were profoundly affected by T. cruzi infection, such as glucose uptake, sorbitol pathway, fatty acid and phospholipid synthesis that were increased in heart tissue but decreased in plasma. Tricarboxylic acid cycle was decreased in heart tissue and plasma whereas reactive oxygen species production and uric acid formation were also deeply increased in infected hearts suggesting a stressful condition in the heart. While specific metabolites allantoin, kynurenine and p-cresol sulfate, resulting from nucleotide, tryptophan and phenylalanine/tyrosine metabolism, respectively, were increased in heart tissue and also in plasma. These results provide new valuable information on the pathogenesis of acute Chagas disease, unravel several new metabolic pathways susceptible of clinical management and identify metabolites useful as potential specific biomarkers for monitoring treatment and clinical severity in patients.This work was supported by ‘‘Ministerio de Ciencia e Innovación’’ (SAF2010-17833); ‘‘Fondo de Investigaciones Sanitarias’’ (PS09/00538 and PI12/00289); ‘‘Red de Investigación de Centros de Enfermedades Tropicales’’ (RICET RD12/0018/0004); European Union (HEALTH-FE-2008-22303, ChagasEpiNet);‘‘Universidad Autónoma de Madrid’’ and ‘‘Comunidad de Madrid’’ (CC08-UAM/SAL-4440/08); AECID Cooperation with Argentine (A/025417/09 and A/031735/10), Comunidad de Madrid (S-2010/BMD-2332) and ‘‘Fundación Ramón Areces’Peer Reviewe

    Transcriptome Analysis and SNP Development Can Resolve Population Differentiation of Streblospio benedicti, a Developmentally Dimorphic Marine Annelid

    Get PDF
    Next-generation sequencing technology is now frequently being used to develop genomic tools for non-model organisms, which are generally important for advancing studies of evolutionary ecology. One such species, the marine annelid Streblospio benedicti, is an ideal system to study the evolutionary consequences of larval life history mode because the species displays a rare offspring dimorphism termed poecilogony, where females can produce either many small offspring or a few large ones. To further develop S. benedicti as a model system for studies of life history evolution, we apply 454 sequencing to characterize the transcriptome for embryos, larvae, and juveniles of this species, for which no genomic resources are currently available. Here we performed a de novo alignment of 336,715 reads generated by a quarter GS-FLX (Roche 454) run, which produced 7,222 contigs. We developed a novel approach for evaluating the site frequency spectrum across the transcriptome to identify potential signatures of selection. We also developed 84 novel single nucleotide polymorphism (SNP) markers for this species that are used to distinguish coastal populations of S. benedicti. We validated the SNPs by genotyping individuals of different developmental modes using the BeadXPress Golden Gate assay (Illumina). This allowed us to evaluate markers that may be associated with life-history mode

    Tiny Sea Anemone from the Lower Cambrian of China

    Get PDF
    Background Abundant fossils from the Ediacaran and Cambrian showing cnidarian grade grossly suggest that cnidarian diversification occurred earlier than that of other eumetazoans. However, fossils of possible soft-bodied polyps are scanty and modern corals are dated back only to the Middle Triassic, although molecular phylogenetic results support the idea that anthozoans represent the first major branch of the Cnidaria. Because of difficulties in taxonomic assignments owing to imperfect preservation of fossil cnidarian candidates, little is known about forms ancestral to those of living groups. Methods and Findings We have analyzed the soft-bodied polypoid microfossils Eolympia pediculata gen. et sp. nov. from the lowest Cambrian Kuanchuanpu Formation in southern China by scanning electron microscopy and computer-aided microtomography after isolating fossils from sedimentary rocks by acetic acid maceration. The fossils, about a half mm in body size, are preserved with 18 mesenteries including directives bilaterally arranged, 18 tentacles and a stalk-like pedicle. The pedicle suggests a sexual life cycle, while asexual reproduction by transverse fission also is inferred by circumferential grooves on the body column. Conclusions The features found in the present fossils fall within the morphological spectrum of modern Hexacorallia excluding Ceriantharia, and thus Eolympia pediculata could be a stem member for this group. The fossils also demonstrate that basic features characterizing modern hexacorallians such as bilateral symmetry and the reproductive system have deep roots in the Early Cambrian.Funding was provided by the National Science Foundation of China (http://www.nsfc.gov.cn/) grants 40830208, 40602003, 50702005 to J. Han and D. G. Shu, and by MOST Special Fund from the State Key Laboratory of Continental Dynamics, Northwest University, China (http://sklcd.nwu.edu.cn/) to J. Han and D. G. Shu. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewe
    corecore