787 research outputs found
Ceria Nanoparticles-Decorated Microcapsules as a Smart Drug Delivery/Protective System: Protection of Encapsulated P. pyralis Luciferase
Russian Science Foundation project 17-73-1041
Syntaxin 16 is a master recruitment factor for cytokinesis
Recently it was shown that both recycling endosome and endosomal sorting complex required for transport (ESCRT) components are required for cytokinesis, in which they are believed to act in a sequential manner to bring about secondary ingression and abscission, respectively. However, it is not clear how either of these complexes is targeted to the midbody and whether their delivery is coordinated. The trafficking of membrane vesicles between different intracellular organelles involves the formation of soluble N-ethylmaleiÂmide–sensitive factor attachment protein receptor (SNARE) complexes. Although membrane traffic is known to play an important role in cytokinesis, the contribution and identity of intracellular SNAREs to cytokinesis remain unclear. Here we demonstrate that syntaxin 16 is a key regulator of cytokinesis, as it is required for recruitment of both recycling endosome–associated Exocyst and ESCRT machinery during late telophase, and therefore that these two distinct facets of cytokinesis are inextricably linked
Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons
One of the most remarkable results of quantum mechanics is the fact that
many-body quantum systems may exhibit phase transitions even at zero
temperature. Quantum fluctuations, deeply rooted in Heisenberg's uncertainty
principle, and not thermal fluctuations, drive the system from one phase to
another. Typically, the relative strength of two competing terms in the
system's Hamiltonian is changed across a finite critical value. A well-known
example is the Mott-Hubbard quantum phase transition from a superfluid to an
insulating phase, which has been observed for weakly interacting bosonic atomic
gases. However, for strongly interacting quantum systems confined to
lower-dimensional geometry a novel type of quantum phase transition may be
induced for which an arbitrarily weak perturbation to the Hamiltonian is
sufficient to drive the transition. Here, for a one-dimensional (1D) quantum
gas of bosonic caesium atoms with tunable interactions, we observe the
commensurate-incommensurate quantum phase transition from a superfluid
Luttinger liquid to a Mott-insulator. For sufficiently strong interactions, the
transition is induced by adding an arbitrarily weak optical lattice
commensurate with the atomic granularity, which leads to immediate pinning of
the atoms. We map out the phase diagram and find that our measurements in the
strongly interacting regime agree well with a quantum field description based
on the exactly solvable sine-Gordon model. We trace the phase boundary all the
way to the weakly interacting regime where we find good agreement with the
predictions of the 1D Bose-Hubbard model. Our results open up the experimental
study of quantum phase transitions, criticality, and transport phenomena beyond
Hubbard-type models in the context of ultracold gases
Genotoxic agents promote the nuclear accumulation of annexin A2: role of annexin A2 in mitigating DNA damage
Annexin A2 is an abundant cellular protein that is mainly localized in the cytoplasm and plasma membrane, however a small population has been found in the nucleus, suggesting a nuclear function for the protein. Annexin A2 possesses a nuclear export sequence (NES) and inhibition of the NES is sufficient to cause nuclear accumulation. Here we show that annexin A2 accumulates in the nucleus in response to genotoxic agents including gamma-radiation, UV radiation, etoposide and chromium VI and that this event is mediated by the nuclear export sequence of annexin A2. Nuclear accumulation of annexin A2 is blocked by the antioxidant agent N-acetyl cysteine (NAC) and stimulated by hydrogen peroxide (H2O2), suggesting that this is a reactive oxygen species dependent event. In response to genotoxic agents, cells depleted of annexin A2 show enhanced phospho-histone H2AX and p53 levels, increased numbers of p53-binding protein 1 nuclear foci and increased levels of nuclear 8-oxo-2'-deoxyguanine, suggesting that annexin A2 plays a role in protecting DNA from damage. This is the first report showing the nuclear translocation of annexin A2 in response to genotoxic agents and its role in mitigating DNA damage.Natural Sciences and Engineering Research Council of Canada (NSERC); European Union [PCOFUND-GA-2009-246542]; Foundation for Science and Technology of Portugal; Beatrice Hunter Cancer Research Institute; Terry Fox Foundationinfo:eu-repo/semantics/publishedVersio
Pneumococcal Serotypes Colonise the Nasopharynx in Children at Different Densities.
Prevalence of pneumococcal serotypes in carriage and disease has been described but absolute serotype colonisation densities have not been reported. 515 paediatric nasal swab DNA extracts were subjected to lytA qPCR and molecular serotyping by microarray. Absolute serotype densities were derived from total pneumococcal density (qPCR cycle threshold and standard curve) and relative abundance (microarray) and varied widely. Compared to all serotype densities observed, the strongest evidence of differences was seen for serotypes 21 and 35B (higher) and 3, 38 and non-typeables (lower) (p<0.05) with a similar hierarchy when only a single serotype carriage was assessed. There was no evidence of any overall density differences between children with single or multiple serotypes detected but serotypes with mid-range densities were more prevalent. The hierarchy of distinct pneumococcal serotype carriage densities described here for the first time, may help explain the dynamics of transmission between children
Hostility, Physical Aggression and Trait Anger as Predictors for Suicidal Behavior in Chinese Adolescents: A School-Based Study
Purpose: This study explored the extent to which trait aggression is associated with suicidal behavior in a nationwide school-based sample of adolescents. Methods: A nationwide sample of 14,537 high school students in urban areas of China was recruited. Information concerning suicide ideation, plans, attempts, trait aggression and other risk factors was collected by a self-reported questionnaire. Multivariate regression analyses were employed to predict suicidal behavior. Results: Approximately 18.5 % of students reported suicide ideation, 8.7 % reported suicide plans, and 4.1 % reported attempts during the past one year. Hostility and trait anger had a significant positive association with suicidal ideation. Hostility and physical aggression were positively related to suicide plans. Hostility had a positive correlation with suicide attempts, while trait anger was inversely associated with suicide attempts. Conclusions: This study suggests that hostility, physical aggression and trait anger may be able to be used to predict suicidal behavior among adolescents. Suicide prevention programs should target at attenuating the severity of hostility, anger and physical aggression. But teachers and parents should also give close attention to students with low trait anger
Umatilla Virus Genome Sequencing and Phylogenetic Analysis: Identification of Stretch Lagoon Orbivirus as a New Member of the Umatilla virus Species
The genus Orbivirus, family Reoviridae, includes 22 species of viruses with genomes composed of ten segments of linear dsRNA that are transmitted between their vertebrate hosts by insects or ticks, or with no identified vectors. Full-genome sequence data are available for representative isolates of the insect borne mammalian orbiviruses (including bluetongue virus), as well as a tick borne avian orbivirus (Great Island virus). However, no sequence data are as yet available for the mosquito borne avian orbiviruses
Rising from the Sea: Correlations between Sulfated Polysaccharides and Salinity in Plants
High salinity soils inhibit crop production worldwide and represent a serious agricultural problem. To meet our ever-increasing demand for food, it is essential to understand and engineer salt-resistant crops. In this study, we evaluated the occurrence and function of sulfated polysaccharides in plants. Although ubiquitously present in marine algae, the presence of sulfated polysaccharides among the species tested was restricted to halophytes, suggesting a possible correlation with salt stress or resistance. To test this hypothesis, sulfated polysaccharides from plants artificially and naturally exposed to different salinities were analyzed. Our results revealed that the sulfated polysaccharide concentration, as well as the degree to which these compounds were sulfated in halophytic species, were positively correlated with salinity. We found that sulfated polysaccharides produced by Ruppia maritima Loisel disappeared when the plant was cultivated in the absence of salt. However, subjecting the glycophyte Oryza sativa Linnaeus to salt stress did not induce the biosynthesis of sulfated polysaccharides but increased the concentration of the carboxylated polysaccharides; this finding suggests that negatively charged cell wall polysaccharides might play a role in coping with salt stress. These data suggest that the presence of sulfated polysaccharides in plants is an adaptation to high salt environments, which may have been conserved during plant evolution from marine green algae. Our results address a practical biological concept; additionally, we suggest future strategies that may be beneficial when engineering salt-resistant crops
- …