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Abstract

Forward scatter radar (FSR) has potential applications such as target detection, classification, and recognition. The
success of these issues depends on the accuracy of parameter estimation. Many parameter estimation methods for
air-based FSR have been given, but cannot directly be applied in the ground-based ones for the different system
functions. The received signal in ground-based FSR depends on the target’s electrical size and trajectory, which are
unknown a priori. It is impossible to construct an optimal reception with accurate reference function in practical
situations. An adaptive method of parameter estimation is therefore proposed in this article, which includes the
construction of reference function and the two-dimensional parameter estimation. Furthermore, the Crammer-Rao
bounds of estimation accuracy are obtained via the analytical derivation, which can be in turn utilized to
determine the estimation step in the algorithm. Finally, the effectiveness of the algorithm is shown using both
simulated and experimental data.

1. Introduction
No matter in the modern or future electronic warfare,
radar is continuously playing a key role. Historically,
bistatic radar is the earliest radar system applied in the
warfare field. Only after the substantiation of a pulse
method of radar and the development of antenna
switches, more convenient monostatic radars were devel-
oped and therefore impeded the development of bistatic
radar [1,2]. However, in the modern electronic warfare,
due to the advent of the fast development of technology,
new threats such as electronic interference, low altitude
penetration, stealth weapon, and anti-radiation missiles
have to be faced and dealt with. The conventional mono-
static radar system has been distressed into dilemma.
Radar community revisited the potential of the bistatic
system due to its potential to deal with the above issues,
and then numerous of hardware and software for the
bistatic radars have been proposed, investigated, con-
structed and built up.
Forward scatter radar (FSR) is an extreme bistatic radar

configuration, which is generally defined with the bistatic

angle around 170°-180° [3], i.e., the target is sensed close
to the radar baseline. The basic principles of FSR can be
found in Willis [2] and Chernyak [3,4]. The main differ-
ence compared with the conventional radars (both
monostatic and bistatic) lies in its target scattering nat-
ure. In the forward scattering (FS) area, the radar utilizes
the diffraction effects rather than the reflection effects of
the electromagnetic wave to capture the target’s informa-
tion, and therefore brings some winning properties com-
pared with conventional ones. The target can be
considered as a secondary antenna which has the silhou-
ette of the target. The gain of this secondary antenna is
directly related to the target FS Cross-Section (CS) and is
independent from the target material [5]. Therefore, such
systems are robust to stealth technology and benefit for
target detection. Another peculiarity is that the received
signal has little phase and amplitude fluctuation. All FS
EM wave components are traveling toward the receiving
antenna in phase, and the signal could coherently be inte-
grated over a long period of time, which will in return
introduces an excellent frequency resolution. As a result,
FSR has unique potential in automatic target recognition
[6]. In 2000, the great Shadow Inverse Synthetic Aperture
theory was proposed by Chapurskiy and Sablin [7], which
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makes significant contribution to target classification and
recognition based on FSR system.
Till now, most existing publications dedicated to FSR

studies focus on the airborne issues. In the air-based
FSR system, the velocity of the air target is high [8], and
the length of the baseline is far larger than the target
size [9], furthermore the clutter background is relatively
small [10]. Therefore, the instantaneous Doppler fre-
quency and angle of arrival can effectively be obtained
via Doppler filter and multi-beam antenna, and then
based on the nonlinear relationship between target coor-
dinate and Doppler frequency as well as angle of arrival,
the approximate coordinate estimates are obtained with
numerical solution [8-10], but the methods of air targets
detection and tracking cannot be used in the ground-
based FSR due to the different system behaviors and tar-
get motion characteristics.
The ground-based network of FS Micro Radars (FSMR)

has been considered for target detection and automatic
recognition in [3,11-16]. It has been demonstrated by
means of both analytical and experimental studies that
ground targets crossing the baseline can reliably be
detected. While in these practical ground-based FSR sys-
tems, the sensors are positioned nearly on the ground;
the operational range is restricted to hundreds of meters
due to the local horizon and landscape peculiarity as well
as power budget constraints. All these make it impossible
to use the mono-pulse antenna or the array antenna to
sense the target. So, the angle of arrival cannot be
achieved directly. Moreover, the velocity of the ground
target is much lower than the air target, the Doppler fre-
quency will not change enough to allow the Doppler fil-
ter extract the Doppler shift (the velocity of the target).
The conventional signal processing method for the air
target detection and parameter estimation cannot be
applied in the ground-based system.
In this article, we consider the method of target detec-

tion and parameter estimation in the ground-based FSR
system. The radars work under the single carrier Continu-
ous Wave mode and have no capability of range resolving.
This means that this radar is only able to detect moving
targets. Because the direct signature (from transmitter to
receiver directly) is far stronger than the moving target
signature, using the envelope detector or phase detector,
we can extract the signature of moving target (beat fre-
quency). This signature will occur in the background of
clutter including foliage and vegetation, thermal and atmo-
spheric and possibly industrial noise and so forth. The lat-
ter could be viewed as Additive White Gaussian Noise
(AWGN). Therefore, we will only consider the case of tar-
get detection against AWGN under the assumption that a
target is following a nearly linear trajectory. Furthermore,
numerous observations of ground targets confirm that the
linear trajectory assumption is correct for practical cases.

Moreover, foliage clutter can be approximated as a nar-
rowband Gaussian process [17-21], and the statistic char-
acteristics in FSMR have empirically been estimated via
the experimental data [18-20], thus the optimal detection
procedure against clutter background in FSMR includes a
whitening filter. Hence, the assumption that the target is
detected against AWGN is also true for clutter presence.
Whereas the optimal signal processing algorithms in

the presence of AWGN are well known for traditional
radars [10], they have to be modified for FSMR, within
the bound of classic linear matched filtering (correlation)
theory. In this article, we will present an improved algo-
rithm based on the method proposed in [22]. The algo-
rithm is developed primarily for moving target detection,
where the two-dimensional parameter (the velocity of the
target and the baseline crossing point) estimations are
the subsidiary but very important function of this algo-
rithm. We first study the received signal of our system.
Due to the symmetry of FSMR system configuration
(shown in Figure 1), the envelope and phase signature of
the received signal are nearly symmetrical and can be
approximated as a double-sided chirp signal with a
modulated envelope. This naturally occurring double-
sided chirp signal is well known in radar system analysis
[10]. We can expect this signal compressed at the optimal
filter output, and hence get an enhanced resolution for
the targets following in a convoy. To achieve this end, an
appropriate reference function is required for optimal
reception. But, in contrast to conventional radar, where
the reference function is the delayed and frequency
shifted transmitted waveform, the received signal in FSR
depends on the targets electrical size and trajectory
which are unknown a priori. That is because the particu-
larity of the ground-based FSR systems which have been
mentioned before. As a result, in practical situations, it is
impossible to obtain the accurate reference function at
the reception side and adaptive method of optimal para-
meter estimation is therefore proposed. Many motion
parameters of the target, such as the velocity, the orienta-
tion, the baseline crossing point, and the acceleration,
affect the nature of the received signal. For this reason,
taking into consideration the practical situation and to
simplify the complexity and cut off the computation cost
of the algorithm, two influential parameters among them
are considered in the proposed algorithm, namely the
velocity and the baseline crossing point. In the ground-
based FS area, the target will not have much complex
motion, and therefore the impact of the acceleration can
be neglected. The proposed algorithm is robust to the
orientation of the target, which is to say even if the angle
is not equal to 90°, we can also estimate the true radical
velocity and obtain a good compression result. We also
give the Crammer-Rao bound of the estimation accuracy,
which can be in turn utilized to determine the estimated
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step of the parameters. Simulation results as well as the
experimental data have been used to verify the correct-
ness and the effectiveness of our method.
This article is organized as follows: The signal model

will be presented in Section 2. The signal processing
algorithm, including signal-to-noise ratio (SNR) maximi-
zation and the joint parameter estimation, will be pro-
posed in Section 3. The Crammer-Rao bounds of our
method as well as the simulation and experimental
results are given in Section 4. Finally, the conclusion is
drawn in Section 5.

2. Signal model of ground moving target in FSR
In this section, the signal model of FSR ground moving
target will be given. Figure 1 shows the topology of the
FSR configuration for moving target. The transmitting
and receiving antennas have an equal elevation hA. The
target has the size of l * h, v is the target motion speed,
O is the crossing point at the baseline, Rt and Rr are the
range of T-Target (transmitter to target) and R-Target
(receiver to target), respectively, dT and dR are the base-
line range of TO and OR correspondingly. On the trans-
mitter side, the azimuth and elevation diffraction angle
are ah and av, and similarly on the receiver side, we
have bh and bv. In short, the relative position of the
transmitter, target, and the receiver thoroughly deter-
mines the topology of the FSR configuration.
Disregarding the possible interference, clutter, and

noise, the signal at the input of the receiving antenna
can be presented as a sum of the target echo and the
leakage signal [17]:

ur(t) = UL cos(ω0t + ϕ0) − Utg(t) cos
(
ω0t + ϕD(t) + ϕx

)
(1)

where UL is the magnitude of leakage signal, ω0 is the
transmitted carrier frequency, �0 is the transmitted
initial phase. Utg (t) is the magnitude of the target echo,
which depends on the shape and location of the target.
The minus sign is generated by the negative gain of the

shadow beam. �D(t) is the Doppler phase which is
formed by the Doppler frequency. �x is an unknown
phase introduced in the FS process. When the leakage
signal power is far greater than the target echo power,
let the signal in (1) go through the envelope detector,
after removing the direct current (DC) component, the
target echo magnitude and the Doppler phase can both
be extracted. The output can be expressed as

Sr(t) = −Utg(t) cos (ϕD (t) + ϕx − ϕ0) (2)

Using the Kirchhoff’s method and Babine’s principle
for solving the diffraction problem, the phase difference
�x - �0 is equal to 90° [2]. Thereby the resultant
received signal can be rewritten as

Sr(t) = Utg(t) sin (ϕD (t)) = Utg(t) sin
(
2π fd(t) · t) (3)

According to (3), the received target signal consists of
two parts, one is the target magnitude Utg(t), and the
other is the target Doppler signal sin(2π fd(t)·t). Compared
with the Doppler signal, the magnitude will not change
much during the observation time, and it is largely deter-
mined by the propagation mechanism and target scatter-
ing model rather than the motion parameter of the target.
More details about the characteristic of magnitude can be
looked up in [17-21]. On the contrary, the Doppler signal
changes much more rapidly with the moving of the target.
It is mainly determined by the motion parameter, and is
the focus in our algorithm. So, a detailed analysis about
the Doppler signal will be presented here.
According to the 3D FSR geometry in Figure 1 and

the definition of Doppler signal, we have the target Dop-
pler signal as

fd = −1
λ

d (Rt (t) + Rr (t))
dt

= −dRt(t)
λdt

− dRr (t)
λdt

(4)

where d(*) denotes the differential operator. Here, we
assume that the target moves in a uniformly linear
form. According to Figure 1, we have
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Figure 1 The moving target topology of FS radar.
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
Rt(t) =

√
(vt cosφ + dT)

2 + (vt sinφ)2

cos αv

Rr(t) =

√
(vt cos φ − dR)

2 + (vt sinφ)2

cos βv

(5)

Then, we have the differentiations as⎧⎪⎪⎨
⎪⎪⎩

dRt (t)
λdt

=
v cos (180 − φ − αh (t))

λ cos αv

dRr (t)
λdt

=
v cos (φ − βh (t))

λ cos βv

(6)

In the ground-based FSR system, the elevation angles
av,bv are very small and can be regarded as a constant
approaching to zero. Then, the Doppler frequency can
be simplified as

fd (t) =
2v
λ

sin
(

αh (t) + βh (t)
2

)
· sin

(
φ +

αh (t) − βh (t)
2

)
(7)

Here, we use the substitutions as
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cos (αh (t)) =
vt cos φ + dT√

(vt cos φ + dT)
2 + (vt sinφ)2

, sin (αh (t)) =
vt sinφ√

(vt cos φ + dT)
2 + (vt sinφ)2

cos (αv (t)) =
vt cos φ − dR√

(vt cos φ − dR)
2 + (vt sinφ)2

, sin (αv (t)) =
vt sinφ√

(vt cos φ − dR)
2 + (vt sinφ)2

ð8Þ

In (7), we can see that the Doppler frequency depends
on the target velocity, the wavelength of the transmitted
signal, and the target horizontal diffraction angle. When
the target crosses the baseline, namely that ah = bh = 0°,
the Doppler frequency in (7) equals to zero. Using this
point, we can estimate the target crossing moment in
the time-frequency domain. To see how the Doppler
signal and the target magnitude behave in the real case,
simulation and experimental results are given below.

In Figure 2, two typical experiment scenarios are shown.
The first scenario is the stadium of University of Birming-
ham, the baseline length (from Tr to Re) is 50 m, three
experiment frequencies at 69, 151, and 433 MHz are used.
The target model is a man with the dimension of 1.75 m ×
0.65 m (height × width), the target moves perpendicularly
to the baseline and crosses the baseline at the midpoint
with an approximately constant velocity. The environment
is relatively clear and broad compared with the second
one. Trees and buildings are far from the Tr and Re, thus
the clutter is low and clear target echo could be seen
(shown in Figure 3a, b). The second experiment scenario
is the grass land near to the building, the experiment fre-
quency is 69 MHz, the experiment baseline length is also
50 m, the target model is human with the dimension 1.65
m × 0.5 m (height × width), the target keeps the constant
velocity to cross the baseline midpoint. In the second
experiment, the environment is bush, a lot of trees are
around the Tr and Re as well as the baseline, but because
of the clutter immunity of low carrier frequency, the clear
target echo could be seen as well (shown in Figure 3c). In
addition, the receiver has a low pass filter (20 Hz) to
reduce the noise and high pass filter (0.1 Hz) to reject the
clutter, these filters will result in the slight distortion of
target echo. In order to compare the results of experimen-
ted data and simulated data, in our simulation, all the
parameters are the same with the experiment parameters
(including the filter parameters).
Figure 3a-c shows the comparison of the simulated

signal and experimental signal at different carrier fre-
quencies. In Figure 3a, the simulated signal has nearly
the same Doppler oscillation with the experimental sig-
nal, which verifies the correctness of (7). The higher the
carrier frequency is, the higher the Doppler oscillation
is. As Figure 3a-c illustrates, the target magnitude
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       (a) Experiment scenario 1             (b) Experiment scenario 2 
Figure 2 Experiment scenario configuration. (a) Experiment scenario 1. (b) Experiment scenario 2.
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behaves more like a window function without much var-
iation. The fast oscillating phase signal has the signature
of a double-sided chirp form. The phase signal obviously
shows more close relationship with the target motion
parameter and could certainly provide more accurate
estimation. In the following discussion, we will approxi-
mate the target magnitude with a rectangular window
function, which is just used to determine the observa-
tion interval.

3. General signal processing algorithm
In this section, a joint parameter estimation method will
be given, which is an improvement of the method given in
[22]. In the classical processing algorithm proposed in
[22], three different assumptions have been made, namely
that the target’s motion direction is normal to the baseline,
the target crosses the baseline at the midpoint, and the
motion of the target is uniformly linear without accelera-
tion. For the velocity direction angle assumption, it is rea-
sonable because the velocity estimation algorithm is very
robust to the velocity direction angle. For the no-accelera-
tion assumption, it is very reasonable as well because the
interested ground target (human or car or tank) has very
small or no acceleration over the observation time (only a
few seconds), the small acceleration only results in the
asymmetry of compression side-lobe, does not affect the
velocity estimation (shown in [23]). For the midpoint
assumption, in the proper operation area (dT/L around
0.5), we can obtain the correct velocity estimation and
good compression results; outside this operation area, the
performance of velocity estimation and target compression
deteriorates a lot. However, in practical case, it is impossi-
ble to guarantee that the target crosses the baseline at
midpoint. Moreover, the target crossing position affects
the Doppler signal a lot and then causes the deviation of
velocity estimation. Therefore, we need a new algorithm
to adapt this case, what is to say, we want to estimate the
target crossing position and velocity at the same time.
Before estimating the target crossing position and tar-

get velocity, we should represent the received signal
under the AWGN background, we have

x (t) = Sr (t, v, dT ) + n (t) , −Tobs
2

≤ t ≤ Tobs
2

(9)

Note that we use Sr (t, v, dT) here to represent Sr (t)
in (3), for that we assume only the three variables t,v,dT
determine the change of Doppler frequency fd, and then
further determine the change of the received signal Sr.
That is to say, except for the natural variable t, the
received signal is not only determined by the target
velocity, but also by the target crossing position. This is
obviously a nonlinear estimation of two variables.
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(a) Simulated and experimented signal at 151MHz
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Figure 3 The comparison of simulated signal and
experimented signal at different carrier frequency. Simulated
and experimented signal at (a) 151MHz, (b) 433 MHz, (c) 69 MHz.
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According to the classical estimation theory [23], log of
likelihood ratio function of the signal under the AWGN
in (9) can be expressed as

ln	
[
x (t) , v, dT

]
=

2
N0

∫ Tobs
2

−
Tobs
2

x (t) Sr (t, v, dT ) dt

− 1
N0

∫ Tobs
2

−
Tobs
2

S2r (t, v, dT ) dt

(10)

Based on (10), we can implement the estimation of velo-
city and crossing point. To find the maximum of (10),
there are two equivalent ways. One way is to find the local
maximization by using the conditional equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ Tobs
2

−
Tobs
2

[
x (t) − Sr (t, v, dT )

] ∂Sr (t, v, dT )

∂v
dt|v=v̂ml

= 0

∫ Tobs
2

−
Tobs
2

[
x (t) − Sr (t, v, dT )

] ∂Sr (t, v, dT )

∂dT
dt|dT=d̂T ml

= 0

(11)

A possible way to implement (11) is the block diagram
shown in Figure 4.
From (11), because of the high nonlinearity, we cannot

obtain the analytical expression of v̂ml and d̂T ml , we can
only obtain the numerical solution from the block dia-
gram in Figure 4. But this is a time-consuming process.
According to (10), the second term is nearly a constant

representing the SNR. The basic operation on the received
data consists of generating the first term in (10) as a func-
tion of v and dT. Then, we can rewrite the (10) as

l (v, dT) =
∫ Tobs

2

−
Tobs
2

x (t) Sr (t, v, dT ) dt (12)

Based on (12), an alternate approach equivalent to
(10) is to divide the range into increments of length Δv,
Δd and perform the parallel processing operation shown
in Figure 5 for discrete values of v and dT

v1 = 0 +
�v
2

, dT1 = dT0 +
�d
2

v2 = 0 +
3�v

2
, dT2 = dT0 +

3�d

2

⎧⎪⎪⎨
⎪⎪⎩
M =

[
Vm

�v
+
1
2

]

P =
[
L − 2 · dT0

�d
+
1
2

]
...

...

vM = 0 +
(
M − 1

2

)
�v, dTP = dT0 +

(
P − 1

2

)
�d

ð13Þ

where L is the baseline length, dT0 is the starting
range from target to transmitter, M and P are the chan-
nel numbers of the filter bank.
The operation structure shown in Figure 5 is an

equivalent implementation of (11). The corresponding
parameters (vm,dTp) with the maximum output are the
final estimated results. The values of Δv,Δd in (13) are
very important parameters in our algorithm. If the
intervals are too long, the estimated results will deviate
from the real values a lot and reduce the estimation
accuracy. On the other hand, if the intervals are too
short, it will dramatically increase the computation
cost. Therefore, selecting appropriate incremental
intervals is very important, and the Crammer-Rao
bounds of the estimation are naturally good references.
Using the theoretically best accuracy, i.e., the Cram-
mer-Rao bound, the estimated step can guarantee a
good estimation as well as an appropriate computation
cost.
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4. The Crammer-Rao bound
A possible way to accomplish our algorithm is given in
Figure 5. We expect that we choose the correct interval in
our preliminary processing and the final accuracy would
be closely approximated by the Crammer-Rao low bound
(CRLB). The Crammer-Rao low bound can be obtained by
inverting the Fisher Information Matrix F whose elements
are the expectation of the second derivative (with respect
to v and dT) of the Log likelihood function [23]. The
Fisher Information Matrix can be written as

F =
[
A B
B C

]
=

⎡
⎢⎢⎣
E

[
∂2 ln	(t, v, dT )

∂v2

]
E

[
∂2 ln	(t, v, dT )

∂v∂dT

]

E
[

∂2 ln	(t, v, dT )

∂v∂dT

]
E

[
∂2 ln	(t, v, dT )

∂d2T

]
⎤
⎥⎥⎦ (14)

Thus, it is not difficult to obtain the CRLB:

CRLB = F−1 =
1

AC − B2

[
C −B

−B A

]
(15)

The variations of A, B, and C in the case of dT = 0.5L
are shown in Figure 6a, and the variations of A, B, and
C in the case of dT = 0.2L are shown Figure 6b. For a
human target, the observation time is usually more than
25 s, and it can be known that A ≫ C >B, namely that
AC ≫ B2 (shown in Figure 7), so we think the effect of
B can be ignored when calculating the CRLB. That is to
say, the CRLB can be simplified as

CRBL = F−1 ≈ 1
AC

[
C − B

−B A

]
=

[
A−1 −B

/
(AC)

−B
/
(AC) C−1

]
(16)

For the non-random variable, we differentiate (10) and
take the expectation, then we have

E

[
∂2 ln	

[
x (t) , v, dT

]
∂v2

]

=
2
N0

⎧⎪⎨
⎪⎩E

∫ Tobs
2

−
Tobs
2

[
x (t) − Sr (t, v, dT )

] ∂2Sr (t, v, dT )

∂v2
dt − E

∫ Tobs
2

−
Tobs
2

[
∂Sr (t, v, dT )

∂v

]2

dt

⎫⎪⎬
⎪⎭
ð17Þ

E

[
∂2 ln	

[
x (t) , v, dT

]
∂dT

2

]

=
2
N0

⎧⎪⎨
⎪⎩E

∫ Tobs
2

−
Tobs
2

[
x (t) − Sr (t, v, dT )

] ∂2Sr (t, v, dT )

∂dT
2 dt − E

∫ Tobs
2

−
Tobs
2

[
∂Sr (t, v, dT )

∂dT

]2

dt

⎫⎪⎬
⎪⎭
ð18Þ

Figure 6 Absolute value of A, B and C. (a) dT = 0.5L; (b) dT = 0.2L.
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where E[*] means the expectation operator. In the first
term of (17) and (18), we observe a factor that

E
[
x (t) − Sr (t, v, dT )

]
= E [n (t)] = 0 (19)

It will make the first integral term to be zero. In the
second term of (17) and (18), there are no random
quantities, and therefore the expectation operation gives
the integral itself. In addition, the partial derivative of
the signal can be rewritten as

∂Sr (t, v, dT )

∂v
≈ ∂

(
Utg sin

(
2π fdt

))
∂v

≈ Utg · 2πvLt2

λdT · (L − dT)
· cos

(
π

v2L
λdT · (L − dT)

t2
)(20)

∂Sr (t, v, dT )

∂dT
≈ ∂

(
Utg sin

(
2π fdt

))
∂dT

≈ Utg · πv2t2 (2dT − L)

λdT
2 · (L − dT)

2 · cos
(

π
v2L

λdT · (L − dT)
t2

)(21)

Substituting (19)-(21) into (17) and (18), we have

γ 2
v = Var

[
v̂ml − v

] ≥ N0

2
∫ Tobs

2

−
Tobs
2

[
∂Sr (t, v, dT )

∂v

]2

dt

≈ 5

4 · Er
N0

· tan2α · π2T2
obs

λ2

(22)

γ 2
d = Var

[
d̂T ml − dT

]
≥ N0

2
∫ Tobs

2

−
Tobs
2

[
∂Sr (t, v, dT )

∂dT

]2

dt

≈ 10

Er
N0

· π2

λ2
· (
tan2β − tan2α

)2
(23)

Equations (22) and (23) give the analytical expression
of the Crammer-Rao bounds for velocity estimation and
baseline crossing point estimation. Both of these two
estimation accuracies are in proportion to the SNR. The
higher the SNR is, the better the estimation accuracies
are. As for the velocity estimation accuracy, it is also in
proportion to the azimuth angle ah and the observation
time Tobs. This is because the larger ah and the longer
Tobs will lead to a bigger Doppler shift. Meanwhile, a
longer wavelength will reduce the sensitivity of the Dop-
pler frequency, and therefore impact the estimation
accuracy. For the crossing point estimation, a bigger dif-
ference between the ah and bh will lead to a bigger

difference between the Doppler signals, and therefore
results in a better estimation with higher accuracy. As
for the wavelength, it has the same conclusion as the
velocity estimation. Based on the analytical expression
of (22) and (23), simulation results of the Crammer-Rao
bounds for the velocity and crossing point estimation
are presented in Figure 8, which is under the typical
experimental parameter.
From Figure 8, we can see that, when the SNR is 15

dB, the square root of CRLB for the velocity estimation
is less than 0.02 m/s, for the crossing point estimation it
is less than 0.5 m. So, the estimated step should be set
as 0.02 m/s for velocity estimation and 0.5 m for cross-
ing point estimation (where the target model is human
with a velocity of 1 m/s, the baseline length is 50 m). If
so, the estimation accuracy of the relative velocity can
reach 2%, which can well satisfy the requirement for tar-
get recognition.
Noting that in the ground-based FSR system, we do

not estimate the velocity parameter and crossing posi-
tion at the moment of crossing baseline. The velocity
and crossing position are estimated via (11) with the
whole received signal (double-side chirp signal shown in
Figure 3). Take the velocity estimation for example,
from (13), we can see that the target velocity estimation
accuracy depends on the choice of velocity step Δv= vi -
vi-1. If we assume the target’s true velocity is v, a velocity
deviation Δv introduces envelope and phase errors to
the reference function (double-side chirp signal) used
for signal compression. In general, the effect of envelope
error is far less than that of phase error. Therefore, the
required Δv can be determined by the phase error size.
As a rule of thumb, taking pi/4 as the maximum toler-
able phase error, the choice of Δv can be written as

�v
v

≤ λ

8 · (dT + dR) · tan2αMax
(24)

where aMax is the maximal diffraction angle. We can see
that velocity step depends on the carrier frequency, base-
line distance, and target velocity, where wavelength and
baseline distance are known in advance, the diffraction
angle are also preset beforehand and approximately deter-
mined by the target FS patterns. Here, we assume, as an
example, that baseline distance is equal to 50 m, aMax is
30° (for a human target) and for typical velocity (for a
human, 1 m/s) and carrier frequency (151 MHz), the velo-
city step should be chosen as 0.015 m/s at most.
Figure 9 gives the simulation and the experimental result

of the signal processing method in this paper. For compar-
ison, in Figure 10, we first present the processing result of
the classical method in [22] under the same experimental
condition. The target crosses the baseline perpendicularly
at a distance of dT = 10 m from the transmitter. The
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length of the baseline is 50 m. The true velocity of the tar-
get is 1.62 m/s. Figure 10a shows the received signal of the
simulation and experimental data. In Figure 10b, it shows
the estimated velocity by the classical method is 1.92 m/s
which deviates from the true value a lot. The deviation

percentage is
1.92 − 1.62

1.62
× 100% = 18.5%. While in

Figure 9, we can see that both the velocity and the cross-
ing point are estimated correctly. The estimated velocity is
1.62 m/s, the crossing point is estimated at 10 and 40 m.
The simulated and experimental results show that the

classical processing algorithm cannot obtain the correct
the velocity estimation because of the mismatched target
crossing position. Our new algorithm cannot only esti-
mate the velocity, but also estimate the target crossing
position correctly, although there is no range resolution
in the baseline direction. In addition, the new algorithm
extend the operation area, that is to say no matter
where is the target crossing position, we can always
obtain good estimations of the v and dT, contrary to the
classical processing algorithm only works in the opera-
tion area around dT/L = 0.5 (crossing near the
midpoint).
We should point out that there is an ambiguous

crossing position in Figure 8. This is because the refer-
ence signal is symmetrical when the constructed refer-
ence signal has the distance dT to the transmitter or to
the receiver. If we use the netted FSR, it is not difficult
to solve the ambiguity problem of crossing position.

5. Conclusions
In this article, we have presented a signal processing
method for the ground-based FSR system, including the
target detection and the joint parameter estimation. It
extended the operation area of the classical method.

The estimated parameters are very important for further
requirements such as target classification and recogni-
tion. The Crammer-Rao bounds for the accuracy of the
estimations have also been given and be used to deter-
mine the estimated step. The algorithm was tested both
on simulated and experimental data, all of the results
verify the effectiveness of our algorithm.
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