418 research outputs found

    Tailoring The Interface Using Thiophene Small Molecules In Tio 2/p3ht Hybrid Solar Cells

    Get PDF
    In this paper we focus on the effect of carboxylated thiophene small molecules as interface modifiers in TiO 2/P3HT hybrid solar cells. Our results show that small differences in the chemical structure of these molecules, for example, the presence of the -CH 2- group in the 2-thiopheneacetic acid (TAA), can greatly increase the TiO 2 surface wettability, improving the TiO 2/polymer contact. This effect is important to enhance exciton splitting and charge separation. This journal is © 2012 the Owner Societies.14341199011993Huang, Y.-C., Hsu, J.-H., Liao, Y.-C., Yen, W.-C., Li, S.-S., Lin, S.-T., Chen, C.-W., Su, W.-F., (2011) J. Mater. Chem., 21, p. 4450Bouclé, J., Ravirajan, P., Nelson, J., (2007) J. Mater. Chem., 17, p. 3141Bhongale, C.J., Thelakkat, M., (2010) Sol. Energy Mater. Sol. Cells, 94, p. 817Bolognesi, M., Sánchez-Díaz, A., Ajuria, J., Pacios, R., Palomares, E., (2011) Phys. Chem. Chem. Phys., 13, p. 6105Arici, E., Meissner, D., Schaffler, F., Sariciftci, N.S., (2003) Int. J. Photoenergy, 5, p. 199Arici, E., Sariciftci, N.S., Meissner, D., (2003) Adv. Funct. Mater., 13, p. 165De Freitas, J.N., Grova, I.R., Akcelrud, L.C., Arici, E., Sariciftcic, N.S., Nogueira, A.F., (2010) J. Mater. Chem., 20, p. 4845Yella, A., Lee, H.-W., Tsao, H.N., Yi, C., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W.-G., Grätzel, M., (2011) Science, 334, p. 629Yu, Q., Wang, Y., Yi, Z., Zu, N., Zhang, J., Zhang, M., Wang, P., (2010) ACS Nano, 4, p. 6032Lin, Y.-Y., Chu, T.-H., Li, S.-S., Chuang, C.-H., Chang, C.-H., Su, W.-F., Chang, C.-P., Chen, C.-W., (2009) J. Am. Chem. Soc., 131, p. 3644Sun, Z., Li, J., Liu, C., Yang, S., Yan, F., (2011) Adv. Mater., 23, p. 3648Coakley, K.M., Srinvasan, B.S., Ziebarth, J.M., Goh, C., Liu, Y.X., McGehee, M.D., (2005) Adv. Funct. Mater., 15, p. 1927Huang, Y.-C., Yen, W.-C., Liao, Y.-C., Yu, Y.-C., Hsu, C.-C., Ho, M.-L., Chou, P.-T., Su, W.-F., (2010) Appl. Phys. Lett., 96, p. 123501Zhang, W., Zhu, R., Li, F., Wang, Q., Liu, B., (2011) J. Phys. Chem. C, 115, p. 7038Johansson, E.M.J., Scholin, R., Siegbahn, H., Hagfeldt, A., Rensmo, H., (2011) Chem. Phys. Lett., 515, p. 146Ravirajan, P., Peiró, A.M., Nazeeruddin, M.K., Grätzel, M., Bradley, D.D.C., Durrant, J.R., Nelson, J., (2006) J. Phys. Chem. B, 110, p. 7635Weickert, J., Dunbar, R.B., Hesse, H.C., Wiedemann, W., Mende, L.S., (2011) Adv. Mater., 23, p. 1810Chang, J.A., Rhee, J.H., Im, S.H., Lee, Y.H., Kim, H.-J., Seok, S.I., Nazeeruddin, M.K., Gratzel, M., (2010) Nano Lett., 10, p. 2609Jiang, X., Karlsson, K.M., Gabrielsson, E., Johansson, E.M.J., Quintana, M., Karlsson, M., Sun, L., Hagfeldt, A., (2011) Adv. Funct. Mater., 21, p. 2944Snaith, H.J., Moule, A.J., Klein, C., Meerholz, K., Friend, R.H., Grätzel, M., (2007) Nano Lett., 7, p. 3372Weickert, J., Auras, F., Bein, T., Mende, L.S., (2011) J. Phys. Chem. C, 115, p. 15081Liu, Y., Scully, S.R., McGehee, M.D., Liu, J., Luscombe, C.K., Frechet, J.M.J., Shaheen, S.E., Ginley, D.S., (2006) J. Phys. Chem. B, 110, p. 3257Chang, Y.-M., Su, W.-F., Wang, L., (2008) Macromol. Rapid Commun., 29, p. 1303Cantu, M.L., Chafiq, A., Faissat, J., Valls, I.G., Yu, Y., (2011) Sol. Energy Mater. Sol. Cells, 95, p. 1362Jiang, K.-J., Manseki, K., Yu, Y.-H., Masaki, N., Suzuki, K., Suzuki, Y.-L., Yanagida, S., (2009) Adv. Funct. Mater., 19, p. 2481Goh, C., Scully, S.R., McGehee, M.D., (2007) J. Appl. Phys., 101, p. 114503Krüger, J., Bach, U., Grätzel, M., (2000) Adv. Mater., 12, p. 447Montanari, I., Nogueira, A.F., Nelson, J., Durrant, J.R., Winder, C., Loi, M.A., Sariciftci, N.S., Brabec, C., (2002) Appl. Phys. Lett., 81, p. 3001Nogueira, A.F., Montanari, I., Nelson, J., Brabec, C., Sariciftci, N.S., Durrant, J.R., (2003) J. Phys. Chem., 107, p. 1567Haque, S.A., Palomares, E., Cho, B.M., Green, A.N.M., Hirata, N., Klug, D.R., Durrant, J.R., (2005) J. Am. Chem. Soc., 127, p. 3456Clifford, J.N., Palomares, E., Nazeeruddin, M.K., Grätzel, M., Nelson, J., Li, X., Long, J., Durrant, J.R., (2004) J. Am. Chem. Soc., 126, p. 5225Bouclé, J., Chyla, S., Shaffer, M.S.P., Durrant, J.R., Bradley, D.D.C., Nelson, J., (2008) Adv. Funct. Mater., 18, p. 62

    Associação entre parvovírus B19 e artropatias em Belém, Pará, norte do Brasil

    Get PDF
    A total of 220 patients with arthropathy were selected in Belém, Pará between January 1994 and December 2000, and screened for the presence of human parvovirus B19 IgM and IgG antibodies by enzyme-linked immunosorbent assay (ELISA). A subgroup (n = 132) of patients with high levels of antibodies (either IgM+/IgG+ or IgM-/IgG+) were examined for the presence of DNA by polymerase chain reaction/nested PCR. Recent/active infection (detection of IgM and/or IgG-specific antibodies and presence of viral DNA) was identified in 47.7% of the 132 individuals with arthropathy. In our study, women were significantly more affected (59.7%) than men (35.4%) (P = 0.0006). The age group of 11-20 years (84.6%), among female patients, and 21-30 years (42.1%), among male, were those with the highest incidence rates. The analysis of the temporal distribution of B19-associated arthropaties showed a cyclic pattern, with peak incidence rates occuring at 3-5 year intervals. Significant diference (P = 0.01) was observed when comparing both the highest (39.0%) and the lowest (11.0%) seropositivity rates for the years of 1995 and 2000, respectively. The interfalangial joints of hands and feet were mostly affected, with 50.0% and 48.0% of cases among both women and men, respectively. In a smaller proportion, other joints such as those of knee, ankle, pulse and shoulder were affected. As for the duration, symptoms lasted 1 to 5 days in 54.0% of the individuals, whereas in 46.0% of them the disease lasted 6-10 days, if considered the subgroup (n = 63) of patients with recent/active infection by parvovirus B19. In our study, joint clinical manifestations occurred symmetrically. Our results indicate that B19 may be an important agent of arthropathies in our region, and this underscores the need for specific laboratory diagnosis when treating patients suffering from acute arthropathy, mainly pregnant women.Um total de 220 indivíduos portadores de artropatias foi selecionado em Belém, Pará, entre janeiro de 1994 e dezembro de 2000 e, posteriormente, examinado com o propósito de se detectarem anticorpos IgM e IgG para o parvovírus B19, utilizando-se a técnica imunoenzimática (ELISA). Um subgrupo (n = 132) de indivíduos com amostras de soro apresentando altos níveis de anticorpos (IgM+/IgG+ e IgM-/IgG+) foi usado para detecção de DNA do B19 através da reação em cadeia da polimerase (PCR) e do "nested" PCR. Infecção recente/ativa (detecção de IgM e/ou IgG mais a presença de DNA viral) foi diagnosticada em 47,7% dos 132 indivíduos apresentando comprometimento das articulações. O sexo feminino foi mais afetado (59,7%) que o masculino (35,4%), com diferença estatisticamente significativa (P = 0,0006). Os grupos etários mais atingidos foram os de 11-20 anos (84,6%), no sexo feminino, e 21-30 anos (42,1%), no masculino. A análise da distribuição temporal mostrou um padrão cíclico, com períodos de maior e menor atividade viral que variam de 3 a 5 anos. Diferença estatisticamente significativa (P = 0,01) foi observada quando comparadas as freqüências de positividade mais alta (39,0%) e mais baixa (11,0%) para os anos de 1995 e 2000, respectivamente. As articulações mais atingidas foram, em ordem de freqüência, as interfalangianas de mãos e pés, com 50,0% e 48,0% para o sexo feminino e masculino, respectivamente. Em menor proporção outras articulações tais como as do joelho, tornozelo, pulso e ombro foram afetadas. Quanto à duração das manifestações articulares, 54,0% evoluíram por 1-5 dias, e 46,0% ao longo de 6-10 dias, considerando o subgrupo (n = 63) de indivíduos com infecção recente/ativa para o B19 em ambos os sexos. Em nosso estudo, o comprometimento das articulações apresentou caráter simétrico. Os resultados encontrados demonstraram o freqüente acometimento articular associado às infecções recentes/ativas por parvovírus B19, ressaltando a necessidade do diagnóstico laboratorial dessa virose, principalmente entre gestantes

    Synthesis And Characterization Of Zno And Zno:ga Films And Their Application In Dye-sensitized Solar Cells

    Get PDF
    Highly crystalline ZnO and Ga-modified zinc oxide (ZnO:Ga) nanoparticles containing 1, 3 and 5 atom% of Ga 3+ were prepared by precipitation method at low temperature. The films were characterized by XRD, BET, XPS and SEM. No evidence of zinc gallate formation (ZnGa 2O 4), even in the samples containing 5 atom% of gallium, was detected by XRD. XPS data revealed that Ga is present into the ZnO matrix as Ga 3+, according to the characteristic binding energies. The particle size decreased as the gallium level was increased as observed by SEM, which might be related to a faster hydrolysis reaction rate. The smaller particle size provided films with higher porosity and surface area, enabling a higher dye loading. When these films were applied to dye-sensitized solar cells (DSSCs) as photoelectrodes, the device based on ZnO:Ga 5 atom% presented an overall conversion efficiency of 6% (at 10 mW cm -2), a three-fold increase compared to the ZnO-based DSSCs under the same conditions. To our knowledge, this is one of the highest efficiencies reported so far for ZnO-based DSSCs. Transient absorption (TAS) study of the photoinduced dynamics of dye-sensitized ZnO:Ga films showed that the higher the gallium content, the higher the amount of dye cation formed, while no significant change on the recombination dynamics was observed. The study indicates that Ga-modification of nanocrystalline ZnO leads to an improvement of photocurrent and overall efficiency in the corresponding device. © 2008 The Royal Society of Chemistry.1114871491O'Regan, B., Gratzel, M., (1991) Nature, 353, p. 737. , -740Kroon, J.M., Bakker, N.J., Smit, H.J.P., Liska, P., Thampi, K.R., Wang, P., Zakeeruddin, S.M., Tulloch, G.E., (2007) Prog. Photovoltaics, 15, p. 1. , -18Ma, T., Akiyama, M., Abe, E., Imai, I., (2005) Nano Lett., 5, p. 2543. , -2547Ko, K.H., Lee, Y.C., Jung, Y.J., (2005) J. Colloid Interface Sci., 283, p. 482. , -487Kakiuchi, K., Hosono, E., Fujihara, S., (2006) J. Photochem. Photobiol., A, 179, p. 81. , -86Keis, K., Magnusson, E., Lindstrom, H., Lindquist, S.-E., Hagfeldt, A., (2002) Sol. Energy Mater. Sol. Cells, 73, p. 51. , -58Horiuchi, H., Katoh, R., Hara, K., Yanagida, M., Murata, S., Arakawa, H., Tachiya, M., (2003) J. Phys. Chem. B, 107, p. 2570. , -2574Katoh, R., Furube, A., Tamaki, Y., Yoshihara, T., Murai, M., Hara, K., Murata, S., Tachiya, M., (2004) J. Photochem. Photobiol., A, 166, p. 69. , -74Keis, K., Vayssieres, L., Rensmo, H., Lindquist, S.-E., Hagfeldt, A., (2001) J. Electrochem. Soc., 148, p. 149. , -A155Rensmo, H., Keis, K., Lindstrom, H., Sodergren, S., Solbrand, A., Hagfeldt, A., Lindquist, S.E., Muhammed, M., (1997) J. Phys. Chem. B, 101, p. 2598. , -2601Minami, T., Sato, H., Nanto, H., Takata, S., (1985) Jpn. J. Appl. Phys., 24, p. 781. , -L784Park, S.-M., Ikegami, T., Ebihara, K., (2006) Thin Solid Films, 513, p. 90. , -94Nonaka, M., Matsushima, S., Mizuno, M., Kobayashi, K., (2002) Chem. Lett., p. 580. , -581Ohkita, H., Cook, S., Ford, T.A., Greenham, N.C., Durrant, J.R., (2006) J. Photochem. Photobiol., A, 182, p. 225. , -230Haque, S.A., Tachibana, Y., Willis, R.L., Moser, J.E., Gratzel, M., Klug, D.R., Durrant, J.R., (2000) J. Phys. Chem. B, 104, p. 538. , -547Haque, S.A., Tachibana, Y., Klug, D.R., Durrant, J.R., (1998) J. Phys. Chem. B, 102, p. 1745. , -1749Gonçalves, A.S., Lima, S.A.M., Davolos, M.R., Antônio, S.G., Paiva-Santos, C.O., (2006) J. Solid State Chem., 179, p. 1330. , -1334Roberts, N., Wang, R.P., Sleight, A.W., Warren, W.W., (1998) Phys. Rev. B, 57, p. 5734Wang, R., Sleight, A.W., Cleary, D., (1996) Chem. Mater., 8, p. 433. , -439Passlack, M., Schubert, E.F., Hobson, W.S., Hong, M., Moriya, N., Chu, S.N.G., Konstadinidis, K., Zydzik, G.J., (1995) J. Appl. Phys., 77, p. 686. , -693Bhosle, V., Tiwari, A., Narayan, J., (2006) J. Appl. Phys., 100, p. 033713. , -033716Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphrybaker, R., Muller, E., Liska, P., Vlachopoulos, N., Gratzel, M., (1993) J. Am. Chem. Soc., 115, p. 6382. , -6390Imai, Y., Watanabe, A., (2005) J. Mater. Sci., 15, p. 743. , -749Willis, R.L., Olson, C., O'Regan, B., Lutz, T., Nelson, J., Durrant, J.R., (2002) J. Phys. Chem. B, 106, p. 7605. , -7613Green, A.N.M., Palomares, E., Haque, S.A., Kroon, J.M., Durrant, J.R., (2005) J. Phys. Chem. B, 109, p. 12525. , -1253

    [anthropometric Measures For The Introduction Of The Nasogastric Tube For Enteral Nutrition Employing The Esophagogastroduodenoscopy]. [medidas Antropométricas Na Introdução Da Sonda Nasogástrica Para Nutrição Enteral Empregando A Esofagogastroduodenoscopia.]

    Get PDF
    The correct placement of a nasogastric tube for enteral nutrition is subject of several investigations, demonstrating the controversy of the procedure. To establish an external measure that can correspond to the internal measurement which determines the insertion length of nasogastric feeding tube up to the stomach. External measures were obtained between points: nose tip vs earlobe vs xiphoid appendix vs umbilicus and height correlated with the standard measures obtained from patients undergoing diagnostic esophagogastroduodenoscopy. It was found a significative statistical correlation between esophagogastric junction, identified during the esophagogastroduodenoscopy, with the distance measured between the anatomic points of the earlobe and xiphoid appendix (r= 0.75) and from this line with the orthostatic height (r=0.72). The distance between the earlobe to the xiphoid appendix (0.75) and the distance between the earlobe to the xiphoid appendix to the midpoint of the umbilicus, subtracting the distance from tip of nose to earlobe, were safe anatomical parameters to reach the esophagogastric junction. The height in the standing position (r= 0.72) also can be used as an indicator of the length necessary to insert the tube into the stomach. The height in the standing position (r= 0.72) also can be used as an indicator of the length necessary to insert the tube into the stomach.26210711

    New Insights Into Dye-sensitized Solar Cells With Polymer Electrolytes

    Get PDF
    Polymer electrolytes or gel polymer electrolytes are interesting alternatives to substitute liquid electrolytes in dye-sensitized solar cells (DSSC). The interest in this research field is growing continuously, reflected in the increase in the number of papers published each year concerning these materials. This feature article presents a brief review of the history and development of polymer electrolytes aiming at applications in DSSC. Recent improvements achieved by modifications of the composition and by introduction of additives such as inorganic nanofillers, organic molecules and ionic liquids are described. The stabilities of DSSC assembled with these materials are also discussed and further improvements that can be introduced to maximize performance of the solar cell, such as photoelectrode modification, will also be presented. © 2009 The Royal Society of Chemistry.193052795294O'Regan, B., Grätzel, M., (1991) Nature, 353, p. 737Grätzel, M., (2004) J. Photochem. Photobiol. A, 164, p. 3Grätzel, M., (2006) C.R. Chim., 9, p. 578Vincent, C.A., (1987) Prog. Solid. State Chem., 17, p. 167Fenton, D.E., Parker, J.M., Wright, P.V., (1973) Polymer, 14, p. 589Armand, M.B., Chabagno, J.M., Duclot In, M.J., (1979) Fast Ion Transport in Solids: Solid State Batteries and Devices, Ed., , P. Vashisha, J. N. Mundy and G. K. Shenoy, North Holland, New YorkYohannes, T., Solomon, T., Inganäs, O., (1996) Synth. Met., 82, p. 215Yohannes, T., Inganäs, O., (1998) Sol. Energy Mater. Sol. Cells, 51, p. 193Nogueira, A.F., Alonso-Vante, N., De Paoli, M.A., (1999) Synth. Met., 105, p. 23Nogueira, A.F., De Paoli, M.A., (2000) Sol. Energy Mater. Sol. Cells, 61, p. 135Nogueira, A.F., Durrant, J.R., De Paoli, M.A., (2001) Adv. Mater., 13, p. 826Ren, Y., Zhang, Z., Gao, E., Fang, S., Cai, S., (2001) J. Appl. Electrochem., 31, p. 445Gazotti, W.A., Spinacé, M.A.S., Girotto, E.M., De Paoli, M.A., (2000) Solid State Ionics, 130, p. 281Ratner In, M.A., (1987) Polymer Electrolyte Reviews, Ed., (CH. 7). , J. R. MacCallum and C. A. Vincent, Elsevier Applied Science, London, p. 173Nogueira, A.F., Spinace, M.A.S., Gazotti, W.A., Girotto, E.M., De Paoli, M.A., (2001) Solid State Ionics, 140, p. 327Silva, G.G., Lemes, N.H.T., Fonseca, C.N.P., De Paoli, M.A., (1997) Solid State Ionics, 93, p. 105Nogueira, A.F., (2001), Ph.D. Thesis, Universidade Estadual de CampinasNogueira, A.F., De Paoli, M.A., Montanari, I., Monkhouse, R., Nelson, J., Durrant, J.R., (2001) J. Phys. Chem. B, 105, p. 7517Rothenberger, G., Fitzmaurice, D., Grätzel, M., (1992) J. Phys. Chem., 96, p. 5983Enright, B., Redmond, G., Fitzmaurice, D., (1994) J. Phys. Chem., 98, p. 6195Haque, S.A., Tachibana, Y., Willis, R.L., Moser, J.E., Grätzel, M., Klug, D.R., Durrant, J.R., (2000) J. Phys. Chem. B, 104, p. 538Kalaignan, G.P., Kang, M.S., Kang, Y.S., (2006) Solid State Ionics, 177, p. 1091Kato, T., Okazaki, A., Hayase, S., (2002) Chem. Commun., p. 363Gray In, F.M., (1987) Polymer Electrolyte Reviews, Ed., (CH. 6). , J. R. MacCallum and C. A. Vincent, Elsevier Applied Science, London, pp. 139Nogueira, V.C., Longo, C., Nogueira, A.F., Soto-Oviedo, M.A., De Paoli, M.-A., (2006) J. Photochem. Photobiol. A, 181, p. 226De Freitas, J.N., Nogueira, V.C., Ito, B.I., Soto-Oviedo, M.A., Longo, C., De Paoli, M.A., Nogueira, A.F., (2006) Int. J. Photoenergy, p. 75483Longo, C., Nogueira, A.F., De Paoli, M.A., Cachet, H., (2002) J Phys. Chem. B, 106, p. 5925MacDonald, J.R., (1987) Impedance Spectroscopy: Emphasizing Solid Materials and Systems, , Wiley, New YorkPapageorgiou, N., Grätzel, M., Infelta, P.P., (1996) Sol. Energy Mater. Sol. Cells, 44, p. 405Dürr, M., Kron, G., Rau, U., Werner, J.H., Yasuda, A., Nelles, G., (2004) J. Chem. Phys., 121, p. 11374Wang, P., Zakeeruddin, S.M., Comte, P., Exnar, I., Grätzel, M., (2003) J. Am. Chem. Soc., 125, p. 1166Zebede, Z., Lindquist, S.E., (1998) Sol. Energy Mater. Sol. Cells, 51, p. 291Oskam, G., Bergeron, B.V., Meyer, G.J., Searson, P.C., (2001) J. Phys. Chem. B, 105, p. 6867Hayamizu, K., Aihara, Y., Araia, S., Price, W.S., (2000) Electrochim. Acta, 45, p. 1313Hayamizu, K., Auharam, Y., Arai, S., Price, W.S., (1998) Solid State Ionics, 107, p. 1De Freitas, J.N., De G. A, S., De Paoli, M.A., Durrant, J.R., Nogueira, A.F., (2008) Electrochim. Acta, 53, p. 7166Chatzivasiloglou, E., Stergiopoulos, T., Kontos, A.G., Alexis, N., Prodromidis, M., Falaras, P., (2007) J. Photochem. Photobiol. A, 192, p. 49Park, J.H., Yum, J.H., Kim, S.Y., Kang, M.S., Lee, Y.G., Lee, S.S., Kang, Y.S., (2008) J. Photochem. Photobiol. A, 194, p. 149Benedetti, J.E., De Paoli, M.A., Nogueira, A.F., (2008) Chem. Commun., p. 1121Kubo, W., Murakoshi, K., Kitamura, T., Yoshida, S., Haruki, M., Hanabusa, K., Shirai, H., Yanagida, S., (2001) J. Phys. Chem. B, 105, p. 12809Montanari, I., Nelson, J., Durrant, J.R., (2002) J. Phys. Chem. B, 106, p. 12203Green, A.N.M., Palomares, E., Haque, S.A., Kroon, J.M., Durrant, J.R., (2005) J. Phys. Chem. B, 109, p. 12525Kassis, A., Saad, M., (2003) Sol. Energy Mater. Sol. Cells, 80, p. 491Kang, M.S., Kim, J.H., Won, J., Kang, Y.S., (2007) J. Phys. Chem. C, 111, p. 5222Croce, F., Appetecchi, G.B., Persi, L., Scrosati, B., (1998) Nature, 394, p. 456Katsaros, G., Stergiopoulos, T., Arabatzis, I.M., Papadokostaki, K.G., Falaras, P., (2002) J. Photochem. Photobiol. A, 149, p. 191Stergiopoulos, T., Arabatzis, I.M., Katsaros, G., Falaras, P., (2002) Nano Lett., 2, p. 1259Chatzivasiloglou, E., Stergiopoulos, T., Spyrellis, N., Falaras, P., (2005) J. Mater. Process. Tech., 161, p. 234Han, H., Liu, W., Zhang, J., Zhao, X.J., (2005) Adv. Funct. Mater., 15, p. 1940Zhang, J., Han, H., Wu, S., Xu, S., Zhou, C., Yang, Y., Zhao, X., (2007) Nanotechnology, 18, p. 295606Kang, M.S., Ahn, K.S., Lee, J.W., (2008) J. Power Sources, 180, p. 896Akhtar, M.S., Chun, J.M., Yang, O.-B., (2007) Electrochem. Commun., 9, p. 2833Han, H., Bach, U., Cheng, Y.B., Caruso, R.A., (2007) Appl. Phys. Lett., 90, p. 213510Zhang, J., Han, H., Wu, S., Xu, S., Yang, Y., Zhou, C., Zhao, X., (2007) Solid State Ionics, 178, p. 1595Zhang, X., Yang, H., Xiong, H.M., Li, F.Y., Xia, Y.Y., (2006) J. Power Sources, 160, p. 1541Nazmutdinova, G., Sensfuss, S., Schrödner, M., Hinsch, A., Sastrawan, R., Gerhard, D., Himmler, S., Wasserscheid, P., (2006) Solid State Ionics, 177, p. 3141Ito, B.I., De Freitas, J.N., De Paoli, M.A., Nogueira, A.F., (2008) J. Braz. Chem. Soc., 19, p. 688Tu, C.W., Liu, K.Y., Chien, A.T., Yen, M.H., Weng, T.H., Ho, K.C., Lin, K.F., (2008) J. Polym. Sci. A, 46, p. 47Nazeeruddin, M.K., Kay, A., Rodicio, I., Grätzel, M., (1993) J. Am. Chem. Soc., 115, p. 6382Wu, J., Lan, Z., Wang, D., Hao, S., Lin, J., Wei, Y., Yin, S., Sato, T., (2006) J. Photochem. Photobiol. A, 181, p. 333Paulsson, H., Hagfeldt, A., Kloo, L., (2003) J. Phys. Chem. B, 107, p. 13665Ganesan, S., Muthuraaman, B., Madhavan, J., Mathew, V., Maruthamuthu, P., Suthanthiraraj, S.A., (2008) Electrochim. Acta, 53, p. 7903Huang, S.Y., Schlichthörl, G., Nozik, A.J., Grätzel, M., Frank, A.J., (1997) J. Phys. Chem. B, 101, p. 2576Mikoshiba, S., Murai, S., Sumino, H., Hayase, S., (2002) J. Photochem. Photobiol. A, 148, p. 33Murai, S., Mikoshiba, S., Sumino, H., Kato, T., Hayase, S., (2003) Chem. Commun., p. 1534Li, M.Y., Feng, S.J., Fang, S.B., Xiao, X.R., Li, X.P., Zhou, X.M., Lin, Y., (2007) Electrochim. Acta, 52, p. 4858Zhang, J., Yang, Y., Wu, S., Xu, S., Zhou, C., Hu, H., Chen, B., Zhao, X., (2008) Electrochim. Acta, 53, p. 5415Zhang, J., Yang, Y., Wu, S.J., Xu, S., Zhou, C.H., Hu, H., Chen, B.L., Zhao, X.Z., (2008) Nanotechnology, 19, p. 245202Shi, C., Dai, S., Wang, K., Pan, X., Hu, L.Z.L., Kong, F., Guo, L., (2005) Electrochim. Acta, 50, p. 2597Morita, Tanaka, H., Ishikawa, M., Matsuda, Y., (1996) Solid State Ionics, 86, p. 401Dillon, R.E.A., Shriver, D.F., (1999) Chem. Mater., 11, p. 3296Gorlov, M., Kloo, L., (2008) Dalton Trans., p. 2655Longo, C., Freitas, J., De Paoli, M.A., (2003) J. Photochem. Photobiol. A, 159, p. 33De Freitas, J.N., Longo, C., Nogueira, A.F., De Paoli, M.A., (2008) Sol. Energy Mater. Sol. Cells, 92, p. 1110Haque, S.A., Palomares, E., Upadhyaya, H.M., Otley, L., Potter, R.J., Holmes, A.B., Durrant, J.R., (2003) Chem. Commun., p. 3008Grünwald, R., Tributsch, H., (1997) J. Phys. Chem. B, 101, p. 2564Wang, P., Zakeeruddin, S.M., Moser, J.E., Nazeeruddin, M.K., Sekiguchi, T., Grätzel, M., (2003) Nat. Mater., 2, p. 402Xia, J., Li, F., Huang, C., Zhaic, J., Jiang, L., (2006) Sol. Energy Mater. Sol. Cells, 90, p. 944Yang, H., Huang, M., Wu, J., Lan, Z., Hao, S., Lin, J., (2008) Mater. Chem. Phys., 110, p. 38Zhang, X., Wang, C.X., Li, F.Y., Xia, Y.Y., (2008) J. Photochem. Photobiol. A, 194, p. 31Huo, Z., Dai, S., Wang, K., Kong, F., Zhang, C., Pan, X., Fang, X., (2007) Sol. Energy Mater. Sol. Cells, 91, p. 1959Wu, J., Lan, Z., Lin, J., Huang, M., Hao, S., Sato, T., Yin, S., (2007) Adv. Mater., 19, p. 4006Wu, J.H., Hao, S., Lan, Z., Lin, J., Huang, M., Huang, Y., Fang, L., Sato, T., (2007) Adv. Funct. Mater, 17, p. 2645Kang, M.S., Kim, J.H., Won, J., Kang, Y.S., (2007) J. Phys. Chem. C, 111, p. 5222Zhu, K., Neale, N.R., Miedaner, A., Frank, A.J., (2007) Nano Lett., 7, p. 69Ishibashi, K., Yamaguchi, R., Kimura, Y., Niwano, M., (2008) J. Electrochem. Soc., 155, p. 10MacAk, J.M., Tsuchiya, H., Ghicov, A., Schmuki, P., (2005) Electrochem. Commun., 7, p. 1133Sun, W.T., Yu, Y., Pan, H.Y., Gao, X.F., Chen, Q., Peng, L.M., (2008) J. Am. Chem. Soc., 130, p. 1124Stergiopoulos, T., Ghicov, A., Likodimos, V., Tsoukleris, D.S., Kunze, J., Schmuki, P., Falaras, P., (2008) Nanotechnology, 19, p. 235602Kang, S.H., Kim, J.Y., Kim, Y., Kim, H.H.S., Sung, Y.E., (2007) J. Phys. Chem. C, 111, p. 9614Paulose, M., Shankar, K., Varghese, O.K., Mor, G.K., Grimes, C.A., (2006) J. Phys. D Appl. Phys., 39, p. 2498Pavasupree, S., Jiputti, J., Ngamsinlapasathian, S., Yoshikawa, S., (2008) Mater. Res. Bull., 43, p. 149Flores, I.C., De Freitas, J.N., Longo, C., De Paoli, M.A., Winnischofer, H., Nogueira, A.F., (2007) J. Photochem. Photobiol. A, 189, p. 153Song, M.Y., Kim, D.K., Ihn, K.J., Jo, S.M., Kim, D.Y., (2004) Nanotechnology, 15, p. 1861Brabec, C.J., Arendse, F., Comte, P., Jirousek, M., Lensmann, F., Shkliver, V., Grätzel, M., (1997) J. Am. Chem. Soc., 80, p. 3157Chen, Z., Tang, Y., Yang, H., Xia, Y., Li, F., Yi, T., Huang, C., (2007) J. Power Sources, 171, p. 990Stathatos, E., Lianos, P., (2007) J. Nanosci. Nanotechnol., 7, p. 555Huang, C.Y., Hsu, Y.C., Chen, J.G., Suryanarayanan, V., Lee, K.M., Ho, K.C., (2006) Sol. Energy Mater. Sol. Cells, 90, p. 2391Uchida, S., Tomiha, M., Takizawa, H., Kawaraya, M., (2004) J. Photochem. Photobiol. A, 164, p. 93Lindstrom, H., Holmberg, A., Magnusson, E., Lindquist, S., Malmqvist, L., Hagfeldt, A., (2001) Nano Lett., 1, p. 97Fujishima, A., Honda, K., (1972) Nature, 238, p. 37Murakami, T.N., Kijitori, Y., Kawashima, N., Miyasaka, T., (2004) J. Photochem. Photobiol. A, 164, p. 187Gutierrez-Tauste, D., Zumeta, I., Vigil, E., Hernandez-Fenollosa, M.A., Domenech, X., Ayllon, J.A., (2005) J. Photochem. Photobiol. A, 175, p. 165Lewis, L.N., Spivack, J.L., Gasaway, S., Williams, E.D., Gui, J.Y., Manivannan, V., Siclovan, O.P., (2006) Sol. Energy Mater. Sol. Cells, 90, p. 1041Stathatos, E., Chen, Y., Dionysiou, D.D., (2008) Sol. Energy Mater Sol. Cells, 92, p. 1358Gregg, B.A., Pichot, P., Ferrere, S., Fields, C.L., (2001) J. Phys. Chem. B, 105, p. 1422Menzies, D., Dai, Q., Cheng, Y.B., Simon, G.P., Spiccia, L., (2005) Mater. Lett., 59, p. 1893Palomares, E., Clifford, J.N., Haque, S.A., Luzt, T., Durrant, J.R., (2003) J. Am. Chem. Soc., 125, p. 475Chapel, S., Chen, S.G., Zaban, A., (2002) Langmuir, 18, p. 3336Kay, A., Gratzel, M., (2002) Chem. Mater., 14, p. 2930Avellaneda, C.O., Gonalves, A.S., Benedetti, J.E., Nogueira Ana, F., Electrochim. Acta, in Pres

    Incorporation Of Nanocrystals With Different Dimensionalities In Hybrid Tio2/p3ht Solar Cells

    Get PDF
    We investigate the effect of TiO2 nanoparticles-nanospheres and nanorods-inserted in the poly(3-hexylthiophene) (P3HT) matrix of TiO2?P3HT inverted hybrid solar cells. X-ray diffraction, high-resolution transmission electron microscopy, small-angle x-ray scattering, photoluminescence, and photoelectrochemical experiments were employed to investigate the structure, morphology, and photoactivity of TiO2 nanoparticles modified with 2-thiopheneacetic acid, mixed or not with P3HT. Both TiO2 nanospheres and TiO2 nanorods presented a good dispersion in the polymer matrix. The incorporation of TiO2 nanospheres and nanorods has improved the photocurrent generation, and devices with efficiency values up to 1.35% were obtained. Our results reveal that the nanoscale morphology enables an enhanced interfacial area for exciton dissociation. In particular, the nanospheres contribute with their high specific area, and the nanorods contribute with their high aspect ratio.51Lee, C.-K., Pao, C.-W., Chen, C.-W., Correlation of nanoscale organizations of polymer and nanocrystals in polymer/inorganic nanocrystal bulk heterojunction hybrid solar cells: Insights from multiscale molecular simulations (2013) Energy Environ. Sci., 6, pp. 307-315Huynh, W.U., Dittmer, J.J., Alivisatos, A.P., Hybrid nanorod: Polymer solar cells (2002) Science, 295, pp. 2425-2427Sian, S., Chen, C.-W., Polymer-metal-oxide hybrid solar cells (2013) J. Mater. Chem. A, 1, pp. 10574-10591Das, J., A facile nonaqueous route for fabricating titania nanorods and their viability in quasi-solid-state dye-sensitized solar cells (2010) J. Mater. Chem., 20, pp. 4425-4431Cozzoli, P.D., Kornowski, A., Weller, H., Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods (2003) J. Am. Chem. Soc., 125, pp. 14539-14548Zeng, T.W., A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices (2006) Nanotechnology, 17, p. 5387Yang, P., TiO2 nanowire electron transport pathways inside organic photovoltaics (2013) Phys. Chem. Chem. Phys., 15, pp. 4566-4572Lin, Y., Morphology control in TiO2 nanorod/polythiophene composites for bulk heterojunction solar cells using hydrogen bonding (2012) Macromolecules, 45, pp. 8665-8673Ranjitha, A., Inverted organic solar cells based on Cd-doped TiO2 as an electron extraction layer (2014) Superlattices Microstruct., 74, pp. 114-122Bolognesi, M., The effect of selective contact electrodes on the interfacial charge recombination kinetics and device efficiency of organic polymer solar cells (2011) Phys. Chem. Chem. Phys., 13, pp. 6105-6109Mor, G.K., High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays (2007) Appl. Phys. Lett., 91, p. 152111Planells, M., Oligothiophene interlayer effect on photocurrent generation for hybrid TiO2/P3HT solar cells (2014) Appl. Mater. Interfaces, 6, pp. 17226-17235Freitas, F.S., Tailoring the interface using thiophene small molecules in TiO2/P3HT hybrid solar cells (2012) Phys. Chem. Chem. Phys., 14, pp. 11990-11993Liu, K., Efficient hybrid plasmonic polymer solar cells with Ag nanoparticle decorated TiO2 nanorods embedded in the active layer (2014) Nanoscale, 6, pp. 6180-6186Lin, Y.-Y., Interfacial nanostructuring on the performance of polymer/TiO2 nanorod bulk heterojunction solar cells (2009) J. Am. Chem. Soc., 131, pp. 3644-3649Eom, S.H., Roles of interfacial modifiers in hybrid solar cells: Inorganic/polymer bilayer versus inorganic/polymer: Fullerene bulk heterojunction (2014) Appl. Mater. Interfaces, 6, pp. 803-810Ravirajan, P., Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer (2006) J. Phys. Chem. B, 110, pp. 7635-7639Abate, A., Protic ionic liquids as p-dopant for organic hole transporting materials and their application in high efficiency hybrid solar cells (2013) J. Am. Chem. Soc., 135, pp. 13538-13548Beaucage, G., Approximations leading to a unified exponential/power-law approach to small-angle scattering (1995) J. Appl. Cryst., 28, pp. 717-728Beaucage, G., Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension (1996) J. Appl. Cryst., 29, pp. 134-146Beaucage, G., Kammler, H.K., Pratsinis, S.E., Particle size distributions from smallangle scattering using global scattering functions (2004) J. Appl. Cryst., 37, pp. 523-535Khatri, I., Similar device architectures for inverted organic solar cell and laminated solid-state dye-sensitized solar cells (2012) ISRN Electron., 10Choi, H.C., Jung, Y.M., Kim, S.B., Size effects in the Raman spectra of TiO2 nanoparticles (2005) Vib. Spectrosc., 37, pp. 33-38Li, G., Polymer self-organization enhances photovoltaic efficiency (2005) J. Appl. Phys., 98, p. 43704Salim, T., Solvent additives and their effects on blend morphologies of bulk heterojunctions (2011) J. Mater. Chem., 21, pp. 242-250Hwang, I.W., Carrier generation and transport in bulk heterojunction films processed with 1,8-octanedithiol as a processing additive (2008) J. Appl. Phys., 104, p. 033706Nguyen, H.Q., Synthesis and characterization of a polyisoprene-b-polystyrene-b-poly (3-hexylthiophene) triblock copolymer (2013) Polym. Chem., 4, pp. 462-465Prosa, T.J., X-ray structural studies of poly(3-alkylthiophenes): An example of an inverse comb (1992) Macromolecules, 25, p. 4364De Freitas, J.N., Connecting the (quantum) dots: Towards hybrid photovoltaic devices based on chalcogenide gels (2012) Phys. Chem. Chem. Phys., 14, pp. 15180-15184Yang, P., Identifying effects of TiO2 nanowires inside bulk heterojunction organic photovoltaics on charge diffusion and recombination (2014) J. Mater. Chem. C, 2, pp. 4922-4927Grancini, G., Boosting infrared light harvesting by molecular functionalization of metal oxide/polymer interfaces in efficient hybrid solar cells (2012) Adv. Funct. Mater., 22, pp. 2160-2166Liao, H.-C., Diketopyrrolopyrrole-based oligomer modified TiO2 nanorods for airstable and all solution processed poly(3-hexylthiophene): TiO2 bulk heterojunction inverted solar cell (2012) J. Mater. Chem., 22, pp. 10589-1059

    Chemical abundances of Seyfert 2 AGNs, II: N2 metallicity calibration based on SDSS

    Get PDF
    We present a semi-empirical calibration between the metallicity (Z) of Seyfert 2 active galactic nuclei and the N2 = log([N II]λ6584/H a) emission-line intensity ratio. This calibration was derived through the [OIII]λ5007/[O II]λ3727 versus N2 diagram containing observational data and photoionization model results obtained with the CLOUDY code. The observational sample consists of 463 confirmed Seyfert 2 nuclei (redshift z ≤ 0.4) taken from the Sloan Digital Sky Survey DR7 data set. The obtained Z-N2 relation is valid for the range 0.3 ≤ (Z/Z⊙) ≤ 2.0 that corresponds to -0.7 ≤ (N2) ≤ 0.6. The effects of varying the ionization parameter (U), electron density and the slope of the spectral energy distribution on the Z estimations are of the order of the uncertainty produced by the error measurements of N2. This result indicates the large reliability of our Z -N2 calibration. A relation between U and the [OIII]/[O II] line ratio, almost independent of other nebular parameter, was obtained.Fil: Carvalho, S.P.. Universidade Do Vale Do Paraiba; BrasilFil: Dors, O. L.. Universidade Do Vale Do Paraiba; BrasilFil: Cardaci, Monica Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Hägele, Guillermo Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Krabbe, Nora Cristina. Universidade Do Vale Do Paraiba; BrasilFil: Pérez Montero, E.. Instituto de Astrofísica de Andalucía; EspañaFil: Monteiro, A.F.. Universidade Do Vale Do Paraiba; BrasilFil: Armah, M.. Universidade Do Vale Do Paraiba; BrasilFil: Freitas Lemes, P.. Universidade Do Vale Do Paraiba; Brasi

    Nanoscale mapping of chemical composition in organic inorganic hybrid perovskite films

    Get PDF
    Lead-based organic-inorganic hybrid perovskite (OIHP) solar cells can attain efficiencies over 20%. However, the impact of ion mobility and/or organic depletion, structural changes, and segregation under operating conditions urge for decisive and more accurate investigations. Hence, the development of analytical tools for accessing the grain-to-grain OIHP chemistry is of great relevance. Here, we used synchrotron infrared nanospectroscopy (nano-FTIR) to map individual nanograins in OIHP films. Our results reveal a spatial heterogeneity of the vibrational activity associated to the nanoscale chemical diversity of isolated grains. It was possible to map the chemistry of individual grains in CsFAMA [Cs(0.05)FA(0.79)MA(0.16)Pb(I0.83Br0.17)(3)] and FAMA [FA(0.83)MA(0.17)Pb(I0.83Br0.17)(3)] films, with information on their local composition. Nanograins with stronger nano-FTIR activity in CsFAMA and FAMA films can be assigned to PbI2 and hexagonal polytype phases, respectively. The analysis herein can be extended to any OIHP films where organic cation depletion/accumulation can be used as a chemical label to study composition
    • …
    corecore