43 research outputs found

    Stable two-dimensional dispersion-managed soliton

    Full text link
    The existence of a dispersion-managed soliton in two-dimensional nonlinear Schr\"odinger equation with periodically varying dispersion has been explored. The averaged equations for the soliton width and chirp are obtained which successfully describe the long time evolution of the soliton. The slow dynamics of the soliton around the fixed points for the width and chirp are investigated and the corresponding frequencies are calculated. Analytical predictions are confirmed by direct PDE and ODE simulations. Application to a Bose-Einstein condensate in optical lattice is discussed. The existence of a dispersion-managed matter-wave soliton in such system is shown.Comment: 4 pages, 3 figures, Submitted to Phys. Rev.

    Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential

    Full text link
    We address a two-dimensional nonlinear elliptic problem with a finite-amplitude periodic potential. For a class of separable symmetric potentials, we study the bifurcation of the first band gap in the spectrum of the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to describe this bifurcation. The coupled-mode equations are derived by the rigorous analysis based on the Fourier--Bloch decomposition and the Implicit Function Theorem in the space of bounded continuous functions vanishing at infinity. Persistence of reversible localized solutions, called gap solitons, beyond the coupled-mode equations is proved under a non-degeneracy assumption on the kernel of the linearization operator. Various branches of reversible localized solutions are classified numerically in the framework of the coupled-mode equations and convergence of the approximation error is verified. Error estimates on the time-dependent solutions of the Gross--Pitaevskii equation and the coupled-mode equations are obtained for a finite-time interval.Comment: 32 pages, 16 figure

    Nonlinear atom optics and bright gap soliton generation in finite optical lattices

    Full text link
    We theoretically investigate the transmission dynamics of coherent matter wave pulses across finite optical lattices in both the linear and the nonlinear regimes. The shape and the intensity of the transmitted pulse are found to strongly depend on the parameters of the incident pulse, in particular its velocity and density: a clear physical picture for the main features observed in the numerical simulations is given in terms of the atomic band dispersion in the periodic potential of the optical lattice. Signatures of nonlinear effects due the atom-atom interaction are discussed in detail, such as atom optical limiting and atom optical bistability. For positive scattering lengths, matter waves propagating close to the top of the valence band are shown to be subject to modulational instability. A new scheme for the experimental generation of narrow bright gap solitons from a wide Bose-Einstein condensate is proposed: the modulational instability is seeded in a controlled way starting from the strongly modulated density profile of a standing matter wave and the solitonic nature of the generated pulses is checked from their shape and their collisional properties

    Two-soliton collisions in a near-integrable lattice system

    Full text link
    We examine collisions between identical solitons in a weakly perturbed Ablowitz-Ladik (AL) model, augmented by either onsite cubic nonlinearity (which corresponds to the Salerno model, and may be realized as an array of strongly overlapping nonlinear optical waveguides), or a quintic perturbation, or both. Complex dependences of the outcomes of the collisions on the initial phase difference between the solitons and location of the collision point are observed. Large changes of amplitudes and velocities of the colliding solitons are generated by weak perturbations, showing that the elasticity of soliton collisions in the AL model is fragile (for instance, the Salerno's perturbation with the relative strength of 0.08 can give rise to a change of the solitons' amplitudes by a factor exceeding 2). Exact and approximate conservation laws in the perturbed system are examined, with a conclusion that the small perturbations very weakly affect the norm and energy conservation, but completely destroy the conservation of the lattice momentum, which is explained by the absence of the translational symmetry in generic nonintegrable lattice models. Data collected for a very large number of collisions correlate with this conclusion. Asymmetry of the collisions (which is explained by the dependence on the location of the central point of the collision relative to the lattice, and on the phase difference between the solitons) is investigated too, showing that the nonintegrability-induced effects grow almost linearly with the perturbation strength. Different perturbations (cubic and quintic ones) produce virtually identical collision-induced effects, which makes it possible to compensate them, thus finding a special perturbed system with almost elastic soliton collisions.Comment: Phys. Rev. E, in pres

    Interaction of N solitons in the massive Thirring model and optical gap system: the Complex Toda Chain Model

    Full text link
    Using the Karpman-Solov''ev quasiparticle approach for soliton-soliton interaction I show that the train propagation of N well separated solitons of the massive Thirring model is described by the complex Toda chain with N nodes. For the optical gap system a generalised (non-integrable) complex Toda chain is derived for description of the train propagation of well separated gap solitons. These results are in favor of the recently proposed conjecture of universality of the complex Toda chain.Comment: RevTex, 23 pages, no figures. Submitted to Physical Review

    Perturbation-induced radiation by the Ablowitz-Ladik soliton

    Full text link
    An efficient formalism is elaborated to analytically describe dynamics of the Ablowitz-Ladik soliton in the presence of perturbations. This formalism is based on using the Riemann-Hilbert problem and provides the means of calculating evolution of the discrete soliton parameters, as well as shape distortion and perturbation-induced radiation effects. As an example, soliton characteristics are calculated for linear damping and quintic perturbations.Comment: 13 pages, 4 figures, Phys. Rev. E (in press

    Engineered nonlinear lattices

    Get PDF
    We show that with the quasi-phase-matching technique it is possible to fabricate stripes of nonlinearity that trap and guide light like waveguides. We investigate an array of such stripes and find that when the stripes are sufficiently narrow, the beam dynamics is governed by a quadratic nonlinear discrete equation. The proposed structure therefore provides an experimental setting for exploring discrete effects in a controlled manner. In particular, we show propagation of breathers that are eventually trapped by discreteness. When the stripes are wide the beams evolve in a structure we term a quasilattice, which interpolates between a lattice system and a continuous system.Peer ReviewedPostprint (published version
    corecore