2,182 research outputs found

    Diamonds in HD 97048

    Full text link
    We present adaptive optics high angular resolution (\sim0\farcs1) spectroscopic observations in the 3 μ\mum region of the Herbig Ae/Be star HD 97048. For the first time, we spatially resolve the emission in the diamond features at 3.43 and 3.53 μ\mum and in the adjacent continuum. Using both the intensity profiles along the slit and reconstructed two-dimensional images of the object, we derive full-width at half-maximum sizes consistent with the predictions for a circumstellar disk seen pole-on. The diamond emission originates in the inner region (R15R \lesssim 15 AU) of the disk.Comment: ApJLetter, in pres

    CARMA interferometric observations of 2MASS J044427+2512: the first spatially resolved observations of thermal emission of a brown dwarf disk

    Get PDF
    We present CARMA 1.3 mm continuum data of the disk surrounding the young brown dwarf 2MASS J044427+2512 in the Taurus molecular cloud. The high angular resolution of the CARMA observations (0.16 arcsec) allows us to spatially resolve for the first time the thermal emission from dust around a brown dwarf. We analyze the interferometric visibilities and constrain the disk outer radius adopting disk models with power-law radial profiles of the dust surface density. In the case of a power-law index equal to or lower than 1, we obtain a disk radius in the range of about 15 - 30 AU, while larger disks are inferred for steeper radial profiles. By combining this information on the disk spatial extent with the sub-mm spectral index of this source we find conclusive evidence for mm-sized grains, or larger, in this brown dwarf disk. We discuss the implications of our results on the models of dust evolution in proto-planetary disks and brown dwarf formation.Comment: 14 pages, 3 figures, Accepted for publication in ApJ Letter

    Protostellar clusters in intermediate-mass (IM) star forming regions

    Full text link
    The transition between the low density groups of T Tauri stars and the high density clusters around massive stars occurs in the intermediate-mass (IM) range (M_*\sim2--8 M_\odot). High spatial resolution studies of IM young stellar objects (YSO) can provide important clues to understand the clustering in massive star forming regions. Aims: Our aim is to search for clustering in IM Class 0 protostars. The high spatial resolution and sensitivity provided by the new A configuration of the Plateau de Bure Interferometer (PdBI) allow us to study the clustering in these nearby objects. Methods: We have imaged three IM Class 0 protostars (Serpens-FIRS 1, IC 1396 N, CB 3) in the continuum at 3.3 and 1.3mm using the PdBI. The sources have been selected with different luminosity to investigate the dependence of the clustering process on the luminosity of the source. Results: Only one millimeter (mm) source is detected towards the low luminosity source Serpens--FIRS 1. Towards CB 3 and IC1396 N, we detect two compact sources separated by \sim0.05 pc. The 1.3mm image of IC 1396 N, which provides the highest spatial resolution, reveal that one of these cores is splitted in, at least, three individual sources.Comment: 4 pages, 3 figures, accepted for publication in Astronomy and Astrophysics Letters (Special Feature IRAM/PdB

    X-Shooter study of accretion in ρ\rho-Ophiucus: very low-mass stars and brown dwarfs

    Get PDF
    We present new VLT/X-Shooter optical and NIR spectra of a sample of 17 candidate young low-mass stars and BDs in the rho-Ophiucus cluster. We derived SpT and Av for all the targets, and then we determined their physical parameters. All the objects but one have M*<0.6 Msun, and 8 have mass below or close to the hydrogen-burning limit. Using the intensity of various emission lines present in their spectra, we determined the Lacc and Macc for all the objects. When compared with previous works targeting the same sample, we find that, in general, these objects are not as strongly accreting as previously reported, and we suggest that the reason is our more accurate estimate of the photospheric parameters. We also compare our findings with recent works in other slightly older star-forming regions to investigate possible differences in the accretion properties, but we find that the accretion properties for our targets have the same dependence on the stellar and substellar parameters as in the other regions. This leads us to conclude that we do not find evidence for a different dependence of Macc with M* when comparing low-mass stars and BDs. Moreover, we find a similar small (1 dex) scatter in the Macc-M* relation as in some of our recent works in other star-forming regions, and no significant differences in Macc due to different ages or properties of the regions. The latter result suffers, however, from low statistics and sample selection biases in the current studies. The small scatter in the Macc-M* correlation confirms that Macc in the literature based on uncertain photospheric parameters and single accretion indicators, such as the Ha width, can lead to a scatter that is unphysically large. Our studies show that only broadband spectroscopic surveys coupled with a detailed analysis of the photospheric and accretion properties allows us to properly study the evolution of disk accretion rates.Comment: accepted for publication in Astronomy & Astrophysics. Abstract shortened to fit arXiv constraint

    Brown dwarf disks with ALMA

    Get PDF
    We present ALMA continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J=3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks physical structure in dust. The results of our analysis show that the disks are relatively large, the smallest one with an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, on the main mechanisms proposed for the formation of brown dwarfs and very low mass stars, as well as on the potential of finding rocky and giant planets around very low mass objects.Comment: 15 pages, 10 figures, accepted for publication in Ap

    The effect of local optically thick regions in the long-wave emission of young circumstellar disks

    Get PDF
    Multi-wavelength observations of protoplanetary disks in the sub-millimeter continuum have measured spectral indices values which are significantly lower than what is found in the diffuse interstellar medium. Under the assumption that mm-wave emission of disks is mostly optically thin, these data have been generally interpreted as evidence for the presence of mm/cm-sized pebbles in the disk outer regions. In this work we investigate the effect of possible local optically thick regions on the mm-wave emission of protoplanetary disks without mm/cm-sized grains. A significant local increase of the optical depth in the disk can be caused by the concentration of solid particles, as predicted to result from a variety of proposed physical mechanisms. We calculate the filling factors and implied overdensities these optically thick regions would need to significantly affect the millimeter fluxes of disks, and we discuss their plausibility. We find that optically thick regions characterized by relatively small filling factors can reproduce the mm-data of young disks without requesting emission from mm/cm-sized pebbles. However, these optically thick regions require dust overdensities much larger than what predicted by any of the physical processes proposed in the literature to drive the concentration of solids. We find that only for the most massive disks it is possible and plausible to imagine that the presence of optically thick regions in the disk is responsible for the low measured values of the mm spectral index. For the majority of the disk population, optically thin emission from a population of large mm-sized grains remains the most plausible explanation. The results of this analysis further strengthen the scenario for which the measured low spectral indices of protoplanetary disks at mm wavelengths are due to the presence of large mm/cm-sized pebbles in the disk outer regions.Comment: 13 pages, 2 figures, A&A in pres

    Grain growth in the envelopes and disks of Class I protostars

    Get PDF
    We present new 3 mm ATCA data of two Class I Young Stellar Objects in the Ophiucus star forming region: Elias29 and WL12. For our analysis we compare them with archival 1.1 mm SMA data. In the (u,v) plane the two sources present a similar behavior: a nearly constant non-zero emission at long baselines, which suggests the presence of an unresolved component and an increase of the fluxes at short baselines, related to the presence of an extended envelope. Our data analysis leads to unusually low values of the spectral index α1.13mm\alpha_{\rm 1.1-3mm}, which may indicate that mm-sized dust grains have already formed both in the envelopes and in the disk-like structures at such early stages. To explore the possible scenarios for the interpretation of the sources we perform a radiative transfer modeling using a Monte Carlo code, in order to take into account possible deviations from the Rayleigh-Jeans and optically thin regimes. Comparison between the model outputs and the observations indicates that dust grains may form aggregates up to millimeter size already in the inner regions of the envelopes of Class I YSOs. Moreover, we conclude that the embedded disk-like structures in our two Class Is are probably very compact, in particular in the case of WL12, with outer radii down to tens of AU.Comment: 12 pages, 8 figures, Accepted for publication in A&
    corecore