13 research outputs found

    Whole genome sequencing of Shigella sonnei through PulseNet Latin America and Caribbean: advancing global surveillance of foodborne illnesses

    Get PDF
    Objectives Shigella sonnei is a globally important diarrhoeal pathogen tracked through the surveillance network PulseNet Latin America and Caribbean (PNLA&C), which participates in PulseNet International. PNLA&C laboratories use common molecular techniques to track pathogens causing foodborne illness. We aimed to demonstrate the possibility and advantages of transitioning to whole genome sequencing (WGS) for surveillance within existing networks across a continent where S. sonnei is endemic. Methods We applied WGS to representative archive isolates of S. sonnei (n = 323) from laboratories in nine PNLA&C countries to generate a regional phylogenomic reference for S. sonnei and put this in the global context. We used this reference to contextualise 16 S. sonnei from three Argentinian outbreaks, using locally generated sequence data. Assembled genome sequences were used to predict antimicrobial resistance (AMR) phenotypes and identify AMR determinants. Results S. sonnei isolates clustered in five Latin American sublineages in the global phylogeny, with many (46%, 149 of 323) belonging to previously undescribed sublineages. Predicted multidrug resistance was common (77%, 249 of 323), and clinically relevant differences in AMR were found among sublineages. The regional overview showed that Argentinian outbreak isolates belonged to distinct sublineages and had different epidemiologic origins. Conclusions Latin America contains novel genetic diversity of S. sonnei that is relevant on a global scale and commonly exhibits multidrug resistance. Retrospective passive surveillance with WGS has utility for informing treatment, identifying regionally epidemic sublineages and providing a framework for interpretation of prospective, locally sequenced outbreaks

    Comparative molecular study of Mycobacterium tuberculosis strains, in times of antimicrobial drug resistance

    No full text
    Strains of Mycobacterium tuberculosis were compared using two DNA fingerprinting techniques: Restriction Fragment Length Polymorphism (RFLP) and Double-Repetitive-Element-PCR (DRE-PCR). Two of these strains: IH1 (susceptible to isoniazid) and IH2 (resistant to isoniazid) were recovered from cases of pulmonary tuberculosis which occurred in two brothers who lived together. The first one was recognized on July 1999, and the second was diagnosed one year later. IH1 and IH2 showed the same pattern of bands with both molecular tests. These results suggest that single drug chemoprophylaxis may occasionally select resistant strains for that drug, which can eventually cause disease and be recognized through these tests. Strains IH3, IH4 and IH5 were obtained from sputum samples of 3 different patients, and intra-laboratory cross-contamination was suspected when it was realized that the 3 positive materials had been consecutively processed the same day by the same worker in the same biological safety cabinet. Again, the 3 strains revealed identical band patterns with RFLP and DRE-PCR, confirming the posed suspicion. The results with DRE-PCR were obtained after only 8 hours of work, without the need for subcultures. This procedure allows quick correction of treatment conducts, avoiding unnecessary exposure of people and bacteria to antimicrobial drugs.<br>Se compararon cepas de Mycobacterium tuberculosis utilizando 2 procedimientos de ADN fingerprinting: polimorfismo de los fragmentos de restricción (RFLP) y Double-Repetitive-Element-PCR (DRE-PCR). Dos de las cepas: IH1 (susceptible a isoniazida) e IH2 (resistente a isoniazida) se recuperaron a partir de casos de tuberculosis pulmonar que ocurrieron en dos hermanos convivientes. La primera fue aislada en julio de 1999 y la segunda un año después. IH1 e IH2 mostraron el mismo patrón de bandas por ambos procedimientos. Estos resultados sugieren que la quimioprofilaxis con una sola droga puede ocasionalmente seleccionar mutantes resistentes, las cuales pueden causar enfermedad y ser reconocidas por estos procedimientos. Las cepas IH3, IH4 e IH5 fueron aisladas de 3 pacientes diferentes, y examinadas por probable contaminación cruzada dentro del laboratorio ya que fueron procesadas el mismo día, por el mismo operador y en la misma cabina de seguridad biológica. Nuevamente, las 3 cepas revelaron el mismo patrón de bandas por RFLP y por DRE-PCR, confirmando la sospecha. Los resultados de la DRE-PCR se obtuvieron luego de 8 horas de trabajo, sin necesidad de subcultivos. Esta técnica permitiría la rápida correción de pautas de tratamiento, evitando la exposición innecesaria de personas y bacterias a drogas antimicrobianas

    Bacterial pathogens associated with bloody diarrhea in Uruguayan children Patógenos bacterianos asociados a diarrea con sangre en niños uruguayos

    No full text
    Diarrheal disease continues to be a serious health problem, especially in developing countries. Bloody diarrhea represents approximately 20-30% of all cases and has higher morbidity and mortality. Treatment with antibiotics is beneficial in cases of Shigella, Campylobacter, Yersinia and Salmonella infection, principally in those children with a higher risk of invasive disease. The aims of this study were to detect the bacterial agents associated with bloody diarrhea in children and to determine their antimicrobial susceptibility patterns. Between June 2001 and January 2008, 249 children with bloody diarrhea were studied. Shigella and Shiga toxin-producing Escherichia coli (STEC) were recovered from 48 (19.3%) and 3 (1.2%) of the total of cases, respectively. In 49 out of 249 children, in whom other enteropathogens were investigated, we recovered Campylobacter jejuni from 7 children (14.3%), Salmonella spp. from 2 (4.1%) and Aeromonas spp. from 1 (2%) in addition to Shigella from 7 children (14.3%). Thirty-four (70%) Shigella isolates showed resistance to ampicillin and 13 (27%) to trimethoprim-sulfamethoxazole. All Shigella isolates were susceptible to nalidixic acid, ciprofloxacin and ceftriaxone. Salmonella and STEC isolates were susceptible to all antibiotics assayed. Thus, the use of trimethoprim-sulfamethoxazole or ampicillin would not be appropriate for the empirical treatment of Shigella - associated diarrhea.<br>La enfermedad diarreica es un problema de salud importante, especialmente en los países en desarrollo. La diarrea sanguinolenta representa el 20-30% del total de casos y determina una mayor morbimortalidad. La antibioticoterapia es beneficiosa en casos de infección por Shigella, Campylobacter, Yersinia y Salmonella, principalmente en niños con riesgo elevado de enfermedad invasora. Los objetivos del presente trabajo fueron conocer las bacterias asociadas a diarrea sanguinolenta y determinar su patrón de sensibilidad a los antimicrobianos. Entre junio de 2001 y enero de 2008 se estudiaron 249 niños con diarrea sanguinolenta. Shigella y Escherichia coli productor de toxina Shiga (STEC) se recuperaron de 48 (19,3%) y 3 (1,2%) casos, respectivamente. En la subpoblación de 49 niños cuyo estudio coprobacteriológico fue más completo se aisló, además de Shigella (14,3%), Campylobacter jejuni (14,3%), Salmonella spp. (4,1%) y Aeromonas spp. (2%). Treinta y cuatro (71%) aislamientos de Shigella mostraron resistencia a ampicilina y 13 (27%) a trimetoprima-sulfametoxazol. Todos los aislamientos de Shigella fueron sensibles a ácido nalidíxico, ciprofloxacina y ceftriaxona. Los aislamientos de Salmonella y STEC fueron sensibles a todos los antibióticos ensayados. En función de estos resultados, se concluye que el uso de trimetoprima-sulfametoxazol y de ampicilina no sería apropiado para el tratamiento empírico de la diarrea asociada a Shigella

    Tracing Back the Evolutionary Route of Enteroinvasive Escherichia coli (EIEC) and Shigella Through the Example of the Highly Pathogenic O96:H19 EIEC Clone

    No full text
    Enteroinvasive Escherichia coli (EIEC) cause intestinal illness through the same pathogenic mechanism used by Shigella spp. The latter species can be typed through genomic and phenotypic methods used for E. coli and have been proposed for reclassification within E. coli species. Recently the first appearance of a highly pathogenic EIEC O96:H19 was described in Europe as the causative agent of two large outbreaks that occurred in Italy and in the United Kingdom. In contrast to Shigella spp and to the majority of EIEC strains, EIEC O96:H19 fermented lactose, lacked pathoadaptive mutations, and showed good fitness in extracellular environment, similarly to non-pathogenic E. coli, suggesting they have emerged following acquisition of the invasion plasmid by a non-pathogenic E. coli. Here we describe the whole genome comparison of two EIEC O96:H19 strains isolated from severe cases of diarrhea in Uruguay in 2014 with the sequences of EIEC O96:H19 available in the public domain. The phylogenetic comparison grouped all the O96:H19 strains in a single cluster, while reference EIEC strains branched into different clades with Shigella strains occupying apical positions. The comparison of the virulence plasmids showed the presence of a complete conjugation region in at least one O96:H19 EIEC. Reverse Transcriptase Real Time PCR experiments confirmed in this strain the expression of the pilin-encoding gene and conjugation experiments suggested its ability to mobilize an accessory plasmid in a recipient strain. Noteworthy, the tra region was comprised between two reversely oriented IS600 elements, which were also found as remnants in another EIEC O96:H19 plasmid lacking the tra locus. We hypothesize that an IS-mediated recombination mechanism may have caused the loss of the conjugation region commonly observed in EIEC and Shigella virulence plasmids. The results of this study support the hypothesis of EIEC originating from non-pathogenic E. coli through the acquisition of the virulence plasmid via conjugation. Remarkably, this study showed the ability of a circulating EIEC strain to mobilize plasmids through conjugation, suggesting a mechanism for the emergence of novel EIEC clones

    Enteropathogenic Escherichia coli Strains Carrying Genes Encoding the PER-2 and TEM-116 Extended-Spectrum β-Lactamases Isolated from Children with Diarrhea in Uruguay

    Get PDF
    We studied 13 extended-spectrum β-lactamase (ESBL)-producing enteropathogenic Escherichia coli isolates from children suffering acute diarrhea in Uruguay. ESBL characterization in crude extracts showed a single band at pI 5.4. PCR amplification and sequencing data allowed identification of bla(PER-2) and bla(TEM-116). Retrospective analysis suggests that these strains were disseminated in the community, even if unnoticed, prior to their access to the hospital environment more than a decade ago
    corecore