638 research outputs found

    Sustainability Initiatives for Management Education: A Roadmap for Institutional Integration

    Get PDF
    What are the best ways to integrate sustainability concepts into higher education institutions and management education? Sustainability, global responsibility, and social innovations are increasingly accepted worldwide as part of a common agenda and international priority. Yet, higher education institutions and management programs are slow to institute these standards and value-based perspectives to help students change the world for our common and better future. This study reviews key international initiatives, resources, frameworks, and paradigms that can help speed up integration of sustainability in higher education institutions. It also provides suggestions to better integrate Ignatian pedagogy and Buddhist perspectives into management education. Based on these analyses, the authors present practical recommendations to integrate sustainability more effectively into management education and to help develop conscious sustainability leaders for the 21st century

    The Millennium Arecibo 21-CM Absorption Line Survey. II. Properties of the Warm and Cold Neutral Media

    Get PDF
    We use the Gaussian-fit results of Paper I to investigate the properties of interstellar HI in the Solar neighborhood. The Warm and Cold Neutral Media (WNM and CNM) are physically distinct components. The CNM spin temperature histogram peaks at about 40 K. About 60% of all HI is WNM. At z=0, we derive a volume filling fraction of about 0.50 for the WNM; this value is very rough. The upper-limit WNM temperatures determined from line width range upward from about 500 K; a minimum of about 48% of the WNM lies in the thermally unstable region 500 to 5000 K. The WNM is a prominent constituent of the interstellar medium and its properties depend on many factors, requiring global models that include all relevant energy sources, of which there are many. We use Principal Components Analysis, together with a form of least squares fitting that accounts for errors in both the independent and dependent parameters, to discuss the relationships among the four CNM Gaussian parameters. The spin temperature T_s and column density N(HI) are, approximately, the two most important eigenvectors; as such, they are sufficient, convenient, and physically meaningful primary parameters for describing CNM clouds. The Mach number of internal macroscopic motions for CNM clouds is typically 2.5, but there are wide variations. We discuss the historical tau-T_s relationship in some detail and show that it has little physical meaning. We discuss CNM morphology using the CNM pressure known from UV stellar absorption lines. Knowing the pressure allows us to show that CNM structures cannot be isotropic but instead are sheetlike, with length-to-thickness aspect ratios ranging up to about 280. We present large-scale maps of two regions where CNM lies in very large ``blobby sheets''.Comment: Revised submission to Ap.J. Changes include: (1) correction of turbulent Mach number in equation 16 and figure 12; the new typical value is 1.3 versus the old, incorrect value 2.5. (2) smaller typeface for the astro-ph version to conserve paper. 60 pages, 16 figure

    Physical properties of a very diffuse HI structure at high Galactic latitude

    Get PDF
    The main goal of this analysis is to present a new method to estimate the physical properties of diffuse cloud of atomic hydrogen observed at high Galactic latitude. This method, based on a comparison of the observations with fractional Brownian motion simulations, uses the statistical properties of the integrated emission, centroid velocity and line width to constrain the physical properties of the 3D density and velocity fields, as well as the average temperature of HI. We applied this method to interpret 21 cm observations obtained with the Green Bank Telescope of a very diffuse HI cloud at high Galactic latitude located in Firback North 1. We first show that the observations cannot be reproduced solely by highly-turbulent CNM type gas and that there is a significant contribution of thermal broadening to the line width observed. To reproduce the profiles one needs to invoke two components with different average temperature and filling factor. We established that, in this very diffuse part of the ISM, 2/3 of the column density is made of WNM and 1/3 of thermally unstable gas (T ~2600 K). The WNM gas is mildly supersonic (~1) and the unstable phase is definitely sub-sonic (~0.3). The density contrast (i.e., the standard deviation relative to the mean of density distribution) of both components is close to 0.8. The filling factor of the WNM is 10 times higher that of the unstable gas, which has a density structure closer to what would be expected for CNM gas. This field contains a signature of CNM type gas at a very low level (N_H ~ 3 x 10^19) which could have been formed by a convergent flow of WNM gas.Comment: 13 pages, 12 figures, accepted for publication in A&

    The Deuterium, Oxygen, and Nitrogen Abundance Toward LSE 44

    Full text link
    We present measurements of the column densities of interstellar DI, OI, NI, and H2 made with FUSE, and of HI made with IUE toward the sdO star LSE 44, at a distance of 554+/-66 pc. This target is among the seven most distant Galactic sight lines for which these abundance ratios have been measured. The column densities were estimated by profile fitting and curve of growth analyses. We find D/H = (2.24 +1.39 -1.32)E-5, D/O = (1.99 +1.30 -0.67)E-2, D/N = (2.75 +1.19 -0.89)E-1, and O/H = (1.13 +0.96 -0.71)E-3 (2 sigma). Of the most distant Galactic sight lines for which the deuterium abundance has been measured LSE 44 is one of the few with D/H higher than the Local Bubble value, but D/O toward all these targets is below the Local Bubble value and more uniform than the D/H distribution. (Abstract abridged.)Comment: 20 pages, including 9 figures. Accepted for publication in Ap

    Microstructure of the Local Interstellar Cloud and the Identification of the Hyades Cloud

    Get PDF
    We analyze high-resolution UV spectra of the Mg II h and k lines for 18 members of the Hyades Cluster to study inhomogeneity along these proximate lines of sight. The observations were taken by the Space Telescope Imaging Spectrograph (STIS) instrument on board the Hubble Space Telescope (HST). Three distinct velocity components are observed. All 18 lines of sight show absorption by the Local Interstellar Cloud (LIC), ten stars show absorption by an additional cloud, which we name the Hyades Cloud, and one star exhibits a third absorption component. The LIC absorption is observed at a lower radial velocity than predicted by the LIC velocity vector derived by Lallement & Bertin (1992) and Lallement et al. (1995), (v(predicted LIC) - v(observed LIC) = 2.9 +/- 0.7 km/s), which may indicate a compression or deceleration at the leading edge of the LIC. We propose an extention of the Hyades Cloud boundary based on previous HST observations of other stars in the general vicinity of the Hyades, as well as ground-based Ca II observations. We present our fits of the interstellar parameters for each absorption component. The availability of 18 similar lines of sight provides an excellent opportunity to study the inhomogeneity of the warm, partially ionized local interstellar medium (LISM). We find that these structures are roughly homogeneous. The measured Mg II column densities do not vary by more than a factor of 2 for angular separations of < 8 degrees, which at the outer edge of the LIC correspond to physical separations of < 0.6 pc.Comment: 35 pages, 11 figures, AASTEX v.5.0 plus EPSF extensions in mkfig.sty; accepted by Ap

    The deuterium-to-oxygen ratio in the interstellar medium

    Full text link
    Because the ionization balances for HI, OI, and DI are locked together by charge exchange, D/O is an important tracer for the value of the D/H ratio and for potential spatial variations in the ratio. As the DI and OI column densities are of similar orders of magnitude for a given sight line, comparisons of the two values will generally be less subject to systematic errors than comparisons of DI and HI, which differ by about five orders of magnitude. Moreover, D/O is additionally sensitive to astration, because as stars destroy deuterium, they should produce oxygen. We report here the results of a survey of D/O in the interstellar medium performed with FUSE. We also compare these results with those for D/N. Together with a few results from previous missions, the sample totals 24 lines of sight. The distances range from a few pc to ~2000 pc and log N(DI) from ~13 to ~16 (cm-2). The D/O ratio is constant in the local interstellar medium out to distances of ~150 pc and N(DI) ~ 1x10^15 cm-2, i.e. within the Local Bubble. In this region of the interstellar space, we find D/O = (3.84+/-0.16)x10^-2 (1 sigma in the mean). The homogeneity of the local D/O measurements shows that the spatial variations in the local D/H and O/H must be extremely small, if any. A comparison of the Local Bubble mean value with the few D/O measurements available for low metallicity quasar sight lines shows that the D/O ratio decreases with cosmic evolution, as expected. Beyond the Local Bubble we detected significant spatial variations in the value of D/O. This likely implies a variation in D/H, as O/H is known to not vary significantly over the distances covered in this study. Our dataset suggests a present-epoch deuterium abundance below 1x10^-5, i.e. lower than the value usually assumed, around 1.5x10^-5.Comment: 17 pages, 9 figures, 4 tables, accepted for publication in the Astrophysical Journa

    Thermal Pressures in Neutral Clouds inside the Local Bubble, as Determined from C I Fine-Structure Excitations

    Get PDF
    High-resolution spectra covering absorption features from interstellar C I were recorded for four early-type stars with spectrographs on HST, in a program to measure the fine-structure excitation of this atom within neutral clouds inside or near the edge of the Local Bubble, a volume of hot (T ~ 10^6 K) gas that emits soft x-rays and extends out to about 100 pc away from the Sun. The excited levels of C I are populated by collisions, and the ratio of excited atoms to those in the ground level give a measure of the local thermal pressure. Absorptions from the two lowest levels of C I were detected toward alpha Del and delta Cyg, while only marginal indications of excited C I were obtained for gamma Ori, and lambda Lup. Along with temperature limits derived by other means, the C I fine-structure populations indicate that for the clouds in front of gamma Ori, delta Cyg and alpha Del, 10^3 < p/k < 10^4 cm^{-3}K at about the +-1 sigma confidence level in each case. The results for lambda Lup are not as well constrained, but still consistent with the other three stars. The results indicate that the thermal pressures are below generally accepted estimates p/k > 10^4 cm^{-3}K for the Local Bubble, based on the strength of x-ray and EUV emission from the hot gas. This inequality of pressure for these neutral clouds and their surroundings duplicates a condition that exists for the local, partly-ionized cloud that surrounds the Sun. An appendix in the paper describes a direct method for determining and eliminating small spectral artifacts arising from variations of detector sensitivity with position.Comment: 33 pages, 7 figures, submitted to the Astrophysical Journa
    • 

    corecore