117 research outputs found

    Possible Explanation of the Geograv Detector Signal during the Explosion of SN 1987A in Modified Gravity Models

    Full text link
    A change in gravity law in some regimes is predicted in the modified gravity models that are actively discussed at present. In this paper, we consider a possibility that the signal recorded by the Geograv resonant gravitational-wave detector in 1987 during the explosion of SN 1987A was produced by an abrupt change in the metric during the passage of a strong neutrino flux through the detector. Such an impact on the detector is possible, in particular, in extended scalar-tensor theories in which the local matter density gradient affects the gravitational force. The first short neutrino pulse emitted at the initial stage of stellar core collapse before the onset of neutrino opacity could exert a major influence on the detector by exiting the detector response at the main resonance frequency. In contrast, the influence of the subsequent broad pulse (with a duration of several seconds) in the resonant detector is exponentially suppressed, despite the fact that the second pulse carries an order-of-magnitude more neutrino energy, and it could generate a signal in the LSD neutrino detector. This explains the time delay of 1.4s between the Geograv and LSD signals. The consequences of this effect of modified gravity for LIGO/Virgo observations are discussed.Comment: 7 pages, 2 figures, minor corrections in the text with respect to the published versio

    The research program of the Liquid Scintillation Detector (LSD) in the Mont Blanc Laboratory

    Get PDF
    A massive (90 tons) liquid scintillation detector (LSD) has been running since October 1984 in the Mont Blanc Laboratory at a depth of 5,200 hg/sq cm of standard rock. The research program of the experiment covers a variety of topics in particle physics and astrophysics. The performance of the detector, the main fields of research are presented and the preliminary results are discussed

    Determination of the muon charge sign with the dipolar spectrometers of the OPERA experiment

    Full text link
    The OPERA long-baseline neutrino-oscillation experiment has observed the direct appearance of ντ\nu_\tau in the CNGS νμ\nu_\mu beam. Two large muon magnetic spectrometers are used to identify muons produced in the τ\tau leptonic decay and in νμCC\nu_\mu^{CC} interactions by measuring their charge and momentum. Besides the kinematic analysis of the τ\tau decays, background resulting from the decay of charmed particles produced in νμCC\nu_\mu^{CC} interactions is reduced by efficiently identifying the muon track. A new method for the charge sign determination has been applied, via a weighted angular matching of the straight track-segments reconstructed in the different parts of the dipole magnets. Results obtained for Monte Carlo and real data are presented. Comparison with a method where no matching is used shows a significant reduction of up to 40\% of the fraction of wrongly determined charges.Comment: 10 pages. Improvements in the tex

    Procedure for short-lived particle detection in the OPERA experiment and its application to charm decays

    Get PDF
    The OPERA experiment, designed to perform the first observation of νμντ\nu_\mu \rightarrow \nu_\tau oscillations in appearance mode through the detection of the τ\tau leptons produced in ντ\nu_\tau charged current interactions, has collected data from 2008 to 2012. In the present paper, the procedure developed to detect τ\tau particle decays, occurring over distances of the order of 1 mm from the neutrino interaction point, is described in detail. The results of its application to the search for charmed hadrons are then presented as a validation of the methods for ντ\nu_\tau appearance detection

    Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam

    Get PDF
    The OPERA experiment, exposed to the CERN to Gran Sasso νμ\nu_\mu beam, collected data from 2008 to 2012. Four oscillated ντ\nu_\tau Charged Current interaction candidates have been detected in appearance mode, which are consistent with νμντ\nu_\mu \to \nu_\tau oscillations at the atmospheric Δm2\Delta m^2 within the "standard" three-neutrino framework. In this paper, the OPERA ντ\nu_\tau appearance results are used to derive limits on the mixing parameters of a massive sterile neutrino.Comment: 11 pages, 4 figures; reference to Planck result updated in the Introduction. Submitted to JHE

    Observation of nu_tau appearance in the CNGS beam with the OPERA experiment

    Get PDF
    The OPERA experiment is searching for nu_mu -> nu_tau oscillations in appearance mode i.e. via the direct detection of tau leptons in nu_tau charged current interactions. The evidence of nu_mu -> nu_tau appearance has been previously reported with three nu_tau candidate events using a sub-sample of data from the 2008-2012 runs. We report here a fourth nu_tau candidate event, with the tau decaying into a hadron, found after adding the 2012 run events without any muon in the final state to the data sample. Given the number of analysed events and the low background, nu_mu -> nu_tau oscillations are established with a significance of 4.2sigma.Comment: Submitted to Progress of Theoretical and Experimental Physics (PTEP

    Evidence for νμντ\nu_\mu \to \nu_\tau appearance in the CNGS neutrino beam with the OPERA experiment

    Full text link
    The OPERA experiment is designed to search for νμντ\nu_{\mu} \rightarrow \nu_{\tau} oscillations in appearance mode i.e. through the direct observation of the τ\tau lepton in ντ\nu_{\tau} charged current interactions. The experiment has taken data for five years, since 2008, with the CERN Neutrino to Gran Sasso beam. Previously, two ντ\nu_{\tau} candidates with a τ\tau decaying into hadrons were observed in a sub-sample of data of the 2008-2011 runs. Here we report the observation of a third ντ\nu_\tau candidate in the τμ\tau^-\to\mu^- decay channel coming from the analysis of a sub-sample of the 2012 run. Taking into account the estimated background, the absence of νμντ\nu_{\mu} \rightarrow \nu_{\tau} oscillations is excluded at the 3.4 σ\sigma level.Comment: 9 pages, 5 figures, 1 table

    Measurement of the atmospheric muon charge ratio with the OPERA detector

    Get PDF
    The OPERA detector at the Gran Sasso underground laboratory (LNGS) was used to measure the atmospheric muon charge ratio in the TeV energy region. We analyzed 403069 atmospheric muons corresponding to 113.4 days of livetime during the 2008 CNGS run. We computed separately the muon charge ratio for single and for multiple muon events in order to select different energy regions of the primary cosmic ray spectrum and to test the charge ratio dependence on the primary composition. The measured charge ratio values were corrected taking into account the charge-misidentification errors. Data have also been grouped in five bins of the "vertical surface energy". A fit to a simplified model of muon production in the atmosphere allowed the determination of the pion and kaon charge ratios weighted by the cosmic ray energy spectrum.Comment: 14 pages, 10 figure
    corecore