4 research outputs found

    Low frequency noise due to magnetic inhomogeneities in submicron FeCoB/MgO/FeCoB magnetic tunnel junctions

    Full text link
    We report on room temperature low frequency noise due to magnetic inhomogeneities/domain walls (MI/DWs) in elliptic submicron FeCoB/MgO/FeCoB magnetic tunnel junctions with an area between 0.0245 and 0.0675{\mu}m2. In the smaller area junctions we found an unexpected random telegraph noise (RTN1), deeply in the parallel state, possibly due to stray field induced MI/DWs in the hard layer. The second noise source (RTN2) is observed in the antiparallel state for the largest junctions. Strong asymmetry of RTN2 and of related resistance steps with current indicate spin torque acting on the MI/DWs in the soft layer at current densities below 5x10^5 A/cm2.Comment: 12 pages, 4 figure

    Cyclin-Dependent Kinase Inhibitor p21 Controls Adult Neural Stem Cell Expansion by Regulating Sox2 Gene Expression

    Get PDF
    In the adult brain, continual neurogenesis of olfactory neurons is sustained by the existence of neural stem cells (NSCs) in the subependymal niche. Elimination of the cyclin-dependent kinase inhibitor 1A (p21) leads to premature exhaustion of the subependymal NSC pool, suggesting a relationship between cell cycle control and long-term self-renewal, but the molecular mechanisms underlying NSC maintenance by p21 remain unexplored. Here we identify a function of p21 in the direct regulation of the expression of pluripotency factor Sox2, a key regulator of the specification and maintenance of neural progenitors. We observe that p21 directly binds a Sox2 enhancer and negatively regulates Sox2 expression in NSCs. Augmented levels of Sox2 in p21 null cells induce replicative stress and a DNA damage response that leads to cell growth arrest mediated by increased levels of p19(Arf) and p53. Our results show a regulation of NSC expansion driven by a p21/Sox2/p53 axis
    corecore