318 research outputs found
Lorentz's model with dissipative collisions
Propagation of a particle accelerated by an external field through a
scattering medium is studied within the generalized Lorentz model allowing
inelastic collisions. Energy losses at collisions are proportional to
, where is the restitution coefficient. For
(elastic collisions) there is no stationary state. It is proved in
one dimension that when the stationary state exists . The
corresponding velocity distribution changes from a highly asymmetric
half-gaussian () to an asymptotically symmetric distribution , for . The identical scaling
behavior in the limit of weak inelasticity is derived in three dimensions by a
self-consistent perturbation analysis, in accordance with the behavior of
rigorously evaluated moments. The dependence on the external field scales out
in any dimension, predicting in particular the stationary current to be
proportional to the square root of the external acceleration.Comment: 13 pages, no figures, submitted to Physica
Electromagnetic Casimir energy with extra dimensions
We calculate the energy-momentum tensor due to electromagnetic vacuum
fluctuations between two parallel hyperplanes in more than four dimensions,
considering both metallic and MIT boundary conditions. Using the axial gauge,
the problem can be mapped upon the corresponding problem with a massless,
scalar field satisfying respectively Dirichlet or Neumann boundary conditions.
The pressure between the plates is constant while the energy density is found
to diverge at the boundaries when there are extra dimensions. This can be
related to the fact that Maxwell theory is then no longer conformally
invariant. A similar behavior is known for the scalar field where a constant
energy density consistent with the pressure can be obtained by improving the
energy-momentum tensor with the Huggins term. This is not possible for the
Maxwell field. However, the change in the energy-momentum tensor with distance
between boundaries is finite in all cases.Comment: 16 pages, typos corrected, published versio
Linking regional unconformities in the Barents Sea to compression-induced forebulge uplift at the Triassic-Jurassic transition
The Triassic-Jurassic transition marks an important change in the basin configuration of the Greater Barents Sea. A contiguous basin with km-thick sedimentary successions changed into a partitioned basin with uplift in the west and foreland basins in the east with significant implication for the basin infill history. Our study employs a range of different high-resolution datasets from a distal part of the basin which unravels the complex pattern of differential uplift and erosion in the basin during this period. We record for the first time distinct angular unconformities between Upper Triassic strata and overlying Lower Jurassic strata within the basin, showing that large parts of it formed topographic highs. Our study links these angular unconformities to compression induced by the Novaya Zemlya Fold and Thrust Belt. A heterolithic basement below a thick sedimentary succession where the fold belt developed created a complex uplift pattern in the basin, at the same time similar to but different from typical forebulge areas. Compression caused inversion of older basement rooted faults defining platforms and graben systems throughout western parts of the Barents Sea basin, in addition to salt remobilization that resulted in differential uplift and erosion. These local zones of uplift controlled the sediment distribution pattern to the basin at a time when the most important reservoir units in the basin were deposited. This new understanding of the basin development explains hitherto enigmatic sequence boundaries that has inspired complex paleogeographic models in the past.publishedVersio
Equation of State for Exclusion Statistics in a Harmonic Well
We consider the equations of state for systems of particles with exclusion
statistics in a harmonic well. Paradygmatic examples are noninteracting
particles obeying ideal fractional exclusion statistics placed in (i) a
harmonic well on a line, and (ii) a harmonic well in the Lowest Landau Level
(LLL) of an exterior magnetic field. We show their identity with (i) the
Calogero model and (ii) anyons in the LLL of an exterior magnetic field and in
a harmonic well.Comment: latex file, 11 page
Tectonostratigraphic development of the Upper Triassic to Middle Jurassic in the Hoop Area, Barents Sea: Implications for understanding ultra-condensed reservoir units
The most prolific reservoir intervals in the Barents Sea are found in the Upper Triassic to Middle Jurassic Realgrunnen Subgroup, deposited during a major change in the structural evolution of the basin which greatly influenced its development and distribution. The effects are evident in one of the petroleum provinces in the SW Barents Sea, the Hoop Area. Due to the condensed nature of the succession, the tectonostratigraphic evolution has been enigmatic.
We use a range of different methods and dataset, including high-resolution P-Cable seismic to determine the tectono-stratigraphic evolution of the succession. Results are important for exploration and production in the Hoop Area and beyond, but also for a broader understanding of how ultra-condensed successions might evolve during long periods of non-deposition and short bursts of deposition.
Seven major phases of deposition and non-deposition/erosion are defined. Stage 1 represents fluvio-deltaic deposition in the Fruholmen Formation (Norian), followed by Stage 2 with significant truncation and non-deposition, lasting up to 35 million years. Deposition resumed with the shallow marine to fluvial Nordmela and Stø formations (Pliensbachian to Bajocian), which both encapsule long periods of erosion and non-deposition (stage 3–6). Stage 7 is represented by transgression and shelf deposition in the Fuglen Formation (Bathonian).
The change from a high-accommodation setting with continuous and relatively high rate of accumulation in the Triassic, to a low-accommodation setting with episodic deposition and extensive sediment cannibalization in the Jurassic, resulted in cleaner sandstones with better reservoir properties. The low-accommodation setting also enabled coarse-graded detritus from hinterlands in Fennoscandia to prograde into distal part of the basin and more amalgamation of the sands during the Jurassic. Adversely, the low accommodation setting also caused a fragmented pattern of deposition and preservation that needs to be carefully considered in subsurface datasets, often with limited resolution.publishedVersio
Improving spatial predictability of petroleum resources within the Central Tertiary Basin, Spitsbergen: a geochemical and petrographic study of coals from the eastern and western coalfields
Central Tertiary Basin (CTB) coals from a variety of palaeogeographic conditions within the Longyear and Verkhnij seams, were sampled to assess the relationship between the petroleum present, the remaining generation potential and coal geochemistry in order to improve the spatial predictability of petroleum resources within the basin. Vitrinite reflectance (VR) values from the CTB coals have been shown to be suppressed (Marshall et al., 2015a). This study attempts to quantify and correct for this suppression effect by applying the Lo (1993) method (LoVR), which uses Hydrogen Index (HI) values to modify VR data, and the coal Rank(Sr) scale of Suggate (2000, 2002), a technique not affected by suppression. In addition, the oil generation and expulsion thresholds for the CTB coals were investigated
Inhibition of Chk1 Kills Tetraploid Tumor Cells through a p53-Dependent Pathway
Tetraploidy constitutes an adaptation to stress and an intermediate step between euploidy and aneuploidy in oncogenesis. Tetraploid cells are particularly resistant against genotoxic stress including radiotherapy and chemotherapy. Here, we designed a strategy to preferentially kill tetraploid tumor cells. Depletion of checkpoint kinase-1 (Chk1) by siRNAs, transfection with dominant-negative Chk1 mutants or pharmacological Chk1 inhibition killed tetraploid colon cancer cells yet had minor effects on their diploid counterparts. Chk1 inhibition abolished the spindle assembly checkpoint and caused premature and abnormal mitoses that led to p53 activation and cell death at a higher frequency in tetraploid than in diploid cells. Similarly, abolition of the spindle checkpoint by knockdown of Bub1, BubR1 or Mad2 induced p53-dependent apoptosis of tetraploid cells. Chk1 inhibition reversed the cisplatin resistance of tetraploid cells in vitro and in vivo, in xenografted human cancers. Chk1 inhibition activated p53-regulated transcripts including Puma/BBC3 in tetraploid but not in diploid tumor cells. Altogether, our results demonstrate that, in tetraploid tumor cells, the inhibition of Chk1 sequentially triggers aberrant mitosis, p53 activation and Puma/BBC3-dependent mitochondrial apoptosis
Radiative Corrections to the Casimir Energy
The lowest radiative correction to the Casimir energy density between two
parallel plates is calculated using effective field theory. Since the
correlators of the electromagnetic field diverge near the plates, the
regularized energy density is also divergent. However, the regularized integral
of the energy density is finite and varies with the plate separation L as
1/L^7. This apparently paradoxical situation is analyzed in an equivalent, but
more transparent theory of a massless scalar field in 1+1 dimensions confined
to a line element of length L and satisfying Dirichlet boundary conditions.Comment: 7 pages, Late
Field induced stationary state for an accelerated tracer in a bath
Our interest goes to the behavior of a tracer particle, accelerated by a
constant and uniform external field, when the energy injected by the field is
redistributed through collision to a bath of unaccelerated particles. A non
equilibrium steady state is thereby reached. Solutions of a generalized
Boltzmann-Lorentz equation are analyzed analytically, in a versatile framework
that embeds the majority of tracer-bath interactions discussed in the
literature. These results --mostly derived for a one dimensional system-- are
successfully confronted to those of three independent numerical simulation
methods: a direct iterative solution, Gillespie algorithm, and the Direct
Simulation Monte Carlo technique. We work out the diffusion properties as well
as the velocity tails: large v, and either large -v, or v in the vicinity of
its lower cutoff whenever the velocity distribution is bounded from below.
Particular emphasis is put on the cold bath limit, with scatterers at rest,
which plays a special role in our model.Comment: 20 pages, 6 figures v3:minor corrections in sec.III and added
reference
WHO collaborative study to assess the suitability of the 1st International Standard and the 1st International Reference Panel for antibodies to Ebola virus
A WHO international collaborative study was undertaken to evaluate preparations of Ebola virus disease (EVD) convalescent plasmas for their suitability to serve as the WHO 1st International Standard (IS) and the WHO 1st International Reference Panel (IRP) for Ebola virus antibodies for use in the standardization and control of assays. The study involved participants testing the convalescent plasma sample preparations and additional monoclonal antibody samples in a blinded manner alongside the WHO International Reference Reagent (NIBSC code 15/220) using anti-EBOV assays established in their laboratories. The candidate 1st IS for Ebola virus antibodies (study sample code 92, NIBSC 15/262) consists of ampoules containing the freeze-dried equivalent of 0.5 mL pooled convalescent plasma obtained from six Sierra Leone patients recovered from EVD. The candidate 1st IRP of anti-Ebola virus convalescent plasmas (NIBSC 16/344) consists of freeze-dried preparations of single donations of convalescent plasma obtained from four patients and one healthy blood donor. Each panel member is an ampoule containing the equivalent of 0.25mL plasma. All convalescent plasmas are confirmed PCR-negative for Ebola virus and underwent, along with the negative plasma, solvent detergent (SD) treatment prior to their development into candidate WHO biological reference materials. In this collaborative study, 17 laboratories from 4 countries used a range of live Ebola virus neutralization assays, pseudotyped virus neutralisation assays and enzyme immunoassays to test the collaborative study samples. Surface plasmon resonance and Western blot assessments were also undertaken. The study found that the candidate International Standard has the highest absolute titre among the convalescent plasma samples, although the geometric mean titres of all the convalescent plasmas fall within ~5-fold of each other. The potencies of three of the convalescent samples fall near the detection limit of some assays. This study also demonstrated that the agreement between laboratories for potencies relative to the candidate International Standard represents an improvement compared to the agreement in absolute titres; however, there is poor agreement between relative potencies for some assays. The results obtained from accelerated thermal degradation studies at 1year indicate that the candidate IS is stable and suitable for long-term use. The results of the collaborative study indicate the suitability of the candidates to serve as WHO reference materials and it is proposed that 15/262 is established as the WHO 1st IS for EBOV antibodies with an assigned potency of 1.5 IU/mL when reconstituted as directed in the instructions for use. It is also proposed that 16/344 is established as the WHO 1st IRP of anti-EBOV convalescent plasmas with panel member code 95 (NIBSC 15/280) assigned a unitage of 1.1 IU/mL when reconstituted as directed in the instructions for use. The other panel members have not been assigned a unitage. The implementation and use by laboratories of the proposed WHO reference materials for EBOV antibodies will facilitate the characterization of the factors that contribute to assay variability and standardization of results across assays and laboratorie
- …