1,449 research outputs found

    CA-IX-Expressing Small Extracellular Vesicles (sEVs) Are Released by Melanoma Cells under Hypoxia and in the Blood of Advanced Melanoma Patients

    Get PDF
    Cutaneous melanoma is a highly aggressive skin cancer, with poor prognosis. The tumor microenvironment is characterized by areas of hypoxia. Carbonic anhydrase IX (CA-IX) is a marker of tumor hypoxia and its expression is regulated by hypoxia-inducible factor-1 (HIF-1). CA-IX has been found to be highly expressed in invasive melanomas. In this study, we investigated the effects of hypoxia on the release of small extracellular vesicles (sEVs) in two melanoma in vitro models. We demonstrated that melanoma cells release sEVs under both normoxic and hypoxic conditions, but only hypoxia-induced sEVs express CA-IX mRNA and protein. Moreover, we optimized an ELISA assay to provide evidence for CA-IX protein expression on the membranes of the sEVs. These CA-IX-positive sEVs may be exploited as potential biomarkers for liquid biopsy

    Peritoneal carcinosis of ovarian origin

    Get PDF
    Epithelial ovarian cancer (EOC) is the second most common genital malignancy in women and is the most lethal gynecological malignancy, with an estimated five-year survival rate of 39%. Despite efforts to develop an effective ovarian cancer screening method, 60% of patients still present with advanced disease. Comprehensive management using surgical cytoreduction to decrease the tumor load to a minimum, and intraperitoneal chemotherapy to eliminate microscopic disease on peritoneal surface, has the potential to greatly improve quality of life and to have an impact on survival in ovarian cancer patients. Despite achieving clinical remission after completion of initial treatment, most patients (60%) with advanced EOC will ultimately develop recurrent disease or show drug resistance; the eventual rate of curability is less than 30%. Given the poor outcome of women with advanced EOC, it is imperative to continue to explore novel therapies.

    Plasma levels of immunosuppressive mediators during cardiopulmonary bypass

    Get PDF
    The aim of this study was to evaluate plasma levels of two mediators with immunosuppressive properties, complement fraction C3a (C3a) and transforming growth factor-β1 (TGF-β1), during extracorporeal circulation. The proliferation index after phytohaemagglutinin (PHA) stimulation of isolated peripheral blood mononuclear cells was also investigated. Sixteen patients undergoing hypothermic (n = 8, group 1) and normothermic (n = 8, group 2) cardiopulmormry bypass (CPB) were enrolled in this study. As a control, we evaluated four patients undergoing thoracovascular operations without CPB. Blood samples were collected before CPB but after anaesthesia, every 30 min during CPB, at the end of CPB and 10 min after protamine administration. Both C3a and TGF-β1 increased significantly during CPB and after protamine administration in the hypothermic as well as the normothermic group. In the latter case the increase of C3a and TGF-β1, although more prominent, was not significantl higher than in the former group. Conversely, the proliferation, index of peripheral mononuclear cells had already decreased 30 min after CPB was started and remained depressed throughout the CPB time. These results suggest a possible role of C3a and TGF-β1 in the immunological changes occurring during extracorporeal circulation

    Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matriptase and hepsin, but not by the membrane-associated protease uPA

    Get PDF
    HGF (hepatocyte growth factor) is a pleiotropic cytokine homologous to the serine protease zymogen plasminogen that requires canonical proteolytic cleavage to gain functional activity. The activating proteases are key components of its regulation, but controversy surrounds their identity. Using quantitative analysis we found no evidence for activation by uPA (urokinase plasminogen activator), despite reports that this is a principal activator of pro-HGF. This was unaffected by a wide range of experimental conditions, including the use of various molecular forms of both HGF and uPA, and the presence of uPAR (uPA receptor) or heparin. In contrast the catalytic domains of the TTSPs (type-II transmembrane serine proteases) matriptase and hepsin were highly efficient activators (50% activation at 0.1 and 3.4 nM respectively), at least four orders of magnitude more efficient than uPA. PS-SCL (positional-scanning synthetic combinatorial peptide libraries) were used to identify consensus sequences for the TTSPs, which in the case of hepsin corresponded to the pro-HGF activation sequence, demonstrating a high specificity for this reaction. Both TTSPs were also found to be efficient activators at the cell surface. Activation of pro-HGF by PC3 prostate carcinoma cells was abolished by both protease inhibition and matriptase-targeting siRNA (small interfering RNA), and scattering of MDCK (Madin–Darby canine kidney) cells in the presence of pro-HGF was abolished by inhibition of matriptase. Hepsin-transfected HEK (human embryonic kidney)-293 cells also activated pro-HGF. These observations demonstrate that, in contrast with the uPA/uPAR system, the TTSPs matriptase and hepsin are direct pericellular activators of pro-HGF, and that together these proteins may form a pathway contributing to their involvement in pathological situations, including cancer

    The video endoscopy inguinal lymphadenectomy for vulvar cancer: A pilot study

    Get PDF
    Objective This prospective pilot study aims to validate feasibility, efficacy and safeness of the innovative technique of video endoscopy inguinal lymphadenectomy (VEIL) and compare it to open inguinal lymphadenectomy (OIL) in the staging and treatment of vulvar cancer (VC). Material and methods All patients affected by VC suitable for bilateral inguinal-femoral lymphadenectomy were prospectively enrolled and submitted to VEIL on one side and OIL contralaterally, sparing the saphenous vein. The surgical and post-surgical data were collected. Univariate analysis included chi square analysis or Fisher's exact test, when appropriate for categorical variables, and the Student t test and Mann–Whitney test when appropriate for continuous variables. Results Between October 2014 and June 2015 fifteen patients were valuable for the study. Although nodal retrieval was comparable for both procedures, operative time was higher after VEIL. No intraoperative complications were observed in both techniques. Postoperative complications were observed in 3 and 2 cases for OIL and VEIL respectively. One patient needed reoperation after OIL for wound necrosis and infection. According to Campisi's stage, lymphedema resulted significantly to be lower after VEIL (p = 0.024). Conclusions Waiting for larger series and longer follow-up data, the VEIL seems to be feasible allowing a radical removal of inguinal lymph nodes as well as OIL with lower morbidity

    Design of a regulated lentiviral vector for hematopoietic stem cell gene therapy of globoid cell leukodystrophy

    Get PDF
    Globoid cell leukodystrophy (GLD) is a demyelinating lysosomal storage disease due to the deficiency of the galactocerebrosidase (GALC) enzyme. The favorable outcome of hematopoietic stem and progenitor cell (HSPC)-based approaches in GLD and other similar diseases suggests HSPC gene therapy as a promising therapeutic option for patients. The path to clinical development of this strategy was hampered by a selective toxicity of the overexpressed GALC in the HSPC compartment. Here, we presented the optimization of a lentiviral vector (LV) in which miR-126 regulation was coupled to codon optimization of the human GALC cDNA to obtain a selective and enhanced enzymatic activity only upon transduced HSPCs differentiation. The safety of human GALC overexpression driven by this LV was extensively demonstrated in vitro and in vivo on human HSPCs from healthy donors. No perturbation in the content of proapoptotic sphingolipids, gene expression profile, and capability of engraftment and mutlilineage differentiation in chimeric mice was observed. The therapeutic potential of this LV was then assessed in a severe GLD murine model that benefited from transplantation of corrected HSPCs with longer survival and ameliorated phenotype as compared to untreated siblings. This construct has thus been selected as a candidate for clinical translatio

    Hypoxia shapes autophagy in LPS-activated dendritic cells

    Get PDF
    During their lifespan, dendritic cells (DCs) are exposed to different pO2 levels that affect their differentiation and functions. Autophagy is one of the adaptive responses to hypoxia with important implications for cell survival. While the autophagic machinery in DCs was shown to impact signaling of TLRs, its regulation by the MD-2/TLR4 ligand LPS is still unclear. The aim of this study was to evaluate whether LPS can induce autophagy in DCs exposed to either aerobic or hypoxic conditions. Using human monocyte-derived DCs and the combination of immunofluorescence confocal analysis, measure of mitochondrial membrane potential, Western blotting, and RT-qPCR, we showed that the ability of LPS to modulate autophagy was strictly dependent upon pO2 levels. Indeed, LPS inhibited autophagy in aerobic conditions whereas the autophagic process was induced in a hypoxic environment. Under hypoxia, LPS treatment caused a significant increase of functional lysosomes, LC3B and Atg protein upregulation, and reduction of SQSTM1/p62 protein levels. This selective regulation was accompanied by activation of signalling pathways and expression of cytokines typically associated with DC survival. Bafilomycin A1 and chloroquine, which are recognized as autophagic inhibitors, confirmed the induction of autophagy by LPS under hypoxia and its impact on DC survival. In conclusion, our results show that autophagy represents one of the mechanisms by which the activation of the MD-2/TLR4 ligand LPS promotes DC survival under hypoxic conditions
    • …
    corecore