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SUMMARY

Expression of the mannose receptor (MRC1/CD206)
identifies macrophage subtypes, such as alterna-
tively activated macrophages (AAMs) and M2-polar-
ized tumor-associated macrophages (TAMs), which
are endowedwith tissue-remodeling, proangiogenic,
and protumoral activity. However, the significance of
MRC1 expression for TAM’s protumoral activity is
unclear. Here, we describe and characterize miR-
511-3p, an intronic microRNA (miRNA) encoded by
both mouse and human MRC1 genes. By using
sensitive miRNA reporter vectors, we demonstrate
robust expression and bioactivity of miR-511-3p in
MRC1+ AAMs and TAMs. Unexpectedly, enforced
expression of miR-511-3p tuned down the protu-
moral gene signature of MRC1+ TAMs and inhibited
tumor growth. Our findings suggest that transcrip-
tional activation of Mrc1 in TAMs evokes a genetic
program orchestrated by miR-511-3p, which limits
rather than enhances their protumoral functions.
Besides uncovering a role for MRC1 as gatekeeper
of TAM’s protumoral genetic programs, these obser-
vations suggest that endogenous miRNAs may op-
erate to establish thresholds for inflammatory cell
activation in tumors.

INTRODUCTION

Tumor-associatedmacrophages (TAMs) support tumor progres-
sion in mouse models of cancer (Qian and Pollard, 2010). The
protumoral functions of TAMs are thought to depend, at least
in part, on their production of growth, tissue-remodeling, and
immunomodulatory factors. Together, these enhance tumor
cell motility and invasion, activate fibroblasts to synthesize
extracellular matrix (ECM) proteins, facilitate angiogenesis, and

suppress antitumor immunity (Qian and Pollard, 2010; Squadrito
and De Palma, 2011; Biswas and Mantovani, 2010; Sica and
Bronte, 2007). However, TAMs comprise distinct subsets, which
appear to contribute differentially to tumor progression (Qian and
Pollard, 2010; Squadrito and De Palma, 2011). In the mouse,
high expression of the mannose receptor (MRC1/CD206) and
low expression of the integrin a X (CD11c) identify a TAM subset
with enhanced proangiogenic, tissue-remodeling and protu-
moral activities (Pucci et al., 2009; Movahedi et al., 2010); a vari-
able proportion of theseMRC1+CD11clow TAMs also express the
angiopoietin receptor, TIE2, and have thus been termed TIE2-
expressing macrophages (De Palma et al., 2005; Pucci et al.,
2009; Mazzieri et al., 2011). Conversely, CD11c+MRC1low

TAMs express a proinflammatory and angiostatic phenotype,
and perhaps exert antitumoral functions (Pucci et al., 2009;
Movahedi et al., 2010; Rolny et al., 2011). It is still unclear
whether the diverse TAM subsets identified in mouse tumor
models derive from distinct circulating monocyte precursors or
are induced locally in the tumor from a common precursor/
progenitor cell (PC) (Squadrito and De Palma, 2011). Yet, several
tumor-derived factors, including cytokines produced by infil-
trating immune cells, may instruct TAMs to acquire either pro-
or antitumoral functions (DeNardo et al., 2010).
MRC1 is an endocytic receptor primarily expressed by

subsets of macrophages and dendritic cells (DCs); it is primarily
involved in the clearance of both host and microbe-derived
glycoproteins (Taylor et al., 2005). MRC1 expression is strongly
upregulated by IL-4 and IL-13, and downregulated by IFN-g
(Stein et al., 1992). Notably, these cytokines are pleiotropic
modulators of macrophage activation; their context-dependent
expression patterns may contribute to the remarkable heteroge-
neity of macrophage phenotypes observed throughout tissues
and tumors. Whereas IFN-g promotes a ‘‘classic’’ or proinflam-
matory macrophage activation program, IL-4 and IL-13 fuel an
‘‘alternative’’ macrophage activation program, which promotes
ECM remodeling, angiogenesis, tissue growth, and repair
(Gordon and Martinez, 2010; Martinez et al., 2009). Based on
their gene expression signature and tissue-remodeling/proan-
giogenic activities, MRC1+ TAMs resemble IL-4-stimulated
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Figure 1. miR-511-3p Is the Active Strand of Mouse Pre-miR-511 and Is Coregulated with the Mrc1 Gene
(A) Genomic region comprising the mouse miR-511 locus and the surrounding Mrc1 gene on mouse chromosome 2, as retrieved by the UCSC (NCBI37/mm9)

genome browser.

(B) Stem-loop structure of the mouse pre-miR-511. miR-511-5p and -3p sequences are shown in blue and red, respectively.

(C) Schematic of the proviral LV used to measure miR-511 activity (miRT-511 LV). The miRT sequences are cloned downstream to the GFP expression cassette,

which is regulated by a bidirectional PGK promoter.

(D) Schematic of the proviral LV used to overexpress miR-511 (SFFV.miR-511 LV). The sequence of the primary miR-511 is cloned within the EF1a intron,

downstream to a SFFV promoter.
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alternatively activated macrophages (AAMs) (Biswas and
Mantovani, 2010; Gordon and Martinez, 2010). Although IL-4,
IFN-g, and several other tumor-derived cytokines and growth
factors have been identified that can modulate macrophage
phenotypes in vitro and in vivo (Biswas and Mantovani, 2010;
DeNardo et al., 2010; Qian and Pollard, 2010), the signals in
tumors that regulate pro- versus antitumoral functions of the
distinct TAM subsets are still poorly defined.
MicroRNAs (miRNAs) are small, single-stranded RNAs that are

generated from endogenous hairpin-shaped transcripts (called
primary miRNAs). It is now well established that the unique
combination of miRNAs expressed in each cell type determines
the fine tuning of hundreds of mRNAs, thus regulating gene
expression and cell function (Bartel, 2009). Several miRNAs
have been identified that are robustly expressed by human
macrophages in vitro (Tserel et al., 2011). However, to our knowl-
edge, no information is available on the miRNA expression
profiles of the distinct TAM subsets. Here, we describe and char-
acterize an intronic miRNA, miR-511-3p, which is embedded in
and coexpressed with the Mrc1 gene. We show that the upre-
gulation of MRC1, which is contextual with the differentiation
(or alternative activation) of protumoral TAMs, triggers a nega-
tive-feedback response orchestrated by miR-511-3p that atten-
uates their protumoral genetic programs.

RESULTS

miR-511-3p Is the Active Strand of miR-511
We noted that the mouse Mrc1 gene, which is primarily ex-
pressed by protumoral TAMs (Pucci et al., 2009) and AAMs
(Stein et al., 1992), contains a miRNA coding sequence, miR-
511 (or mmu-miR-511), located in the fifth intron of the gene
(Figure 1A). Processing of the precursor miRNA (termed pre-
miR-511) should generate two mature miRNAs, miR-511-5p
(located at the 50 end of the pre-miRNA) and miR-511-3p
(located at the 30 end of the pre-miRNA) (Figure 1B).
To investigate whether miR-511-5p and -3p are expressed

and biologically active in live cells, we used a lentiviral vector
(LV) reporter system for miRNA activity (Brown et al., 2007).
We incorporated four miRNA target (miRT) sequences with
perfect complementarity to either miR-511-5p or -3p (termed

miRT-511-5p and miRT-511-3p, respectively) into the 30

untranslated region (UTR) of a green fluorescent protein (GFP)
transgene expressed from a ubiquitously active bidirectional
promoter, which also controls the expression of the reporter
gene, DLNGFR (Figure 1C). We also generated a control LV
expressing a GFP sequence not containing miRT sequences in
its 30 UTR (termed no-miRT). Following LV cell transduction the
miRNA machinery will degrade the miRT-containing GFP tran-
script only in cells that express the cognate miRNA, in a manner
that is dependent on miRNA abundance and/or activity. On the
other hand, expression of DLNGFR is independent of miRNA
activity and is used as an internal normalizer to calculate GFP
repression by the miRNA of interest (Brown et al., 2007).
We initially studiedmiR-511 activity in 293T cells, which do not

express miR-511 endogenously (data not shown). In order to
artificially overexpress the pre-miR-511 (and thus both miR-
511-5p and -3p mature miRNAs), we cloned a fragment of the
Mrc1 intron encompassing the miR-511 locus, downstream to
the spleen focus-forming virus (SFFV) promoter and upstream
to an orange fluorescent protein (OFP) reporter gene (Figure 1D).
We termed the resultant vector SFFV.miR-511 LV. We then
transduced 293T cells with the miRT-511-5p, -3p, or no-miRT
reporter LVs, and superinfected the transduced cells with the
SFFV.miR-511 LV. As shown in Figure 1E, overexpression of
pre-miR-511 repressed GFPmuchmore efficiently in cells trans-
duced with the miRT-511-3p reporter LV, suggesting that the
active strand of the pre-miR-511 is miR-511-3p.

The Mrc1 Gene and miR-511-3p Are Coregulated
Intronic miRNAs can be expressed from either host gene
promoters or independent transcription regulatory elements
(Baskerville and Bartel, 2005; Biasiolo et al., 2011). We then
asked whether expression of the Mrc1 gene and miR-511-3p
are transcriptionally coregulated. To address this question, we
used mouse monocytic cell lines (RAW264.7 and P388D1; see
Figure S1 available online) and bone marrow-derived macro-
phage (BMDM) cultures. qPCR analyses showed decreasing
Mrc1 mRNA levels in the following cell cultures: IL-4-treated
BMDMs; untreated BMDMs; P388D1 cells; LPS/IFN-g-treated
BMDMs; and RAW264.7 cells (Figure 1F). These data are consis-
tent with previous reports showing that IL-4 and LPS/IFN-g

(E) miR-511-5p and -3p activity in 293T cells overexpressing miR-511. The cells were transduced with the miRT-511-5p, -3p, or no-miRT reporter LVs, and

superinfected with the SFFV.miR-511 overexpressing LV. Dot plots show GFP and DLNGFR expression from the indicated reporter LVs. The histogram on the

right shows quantification of GFP repression (mean values ±SEM versus no-miRT control; n = 2 independent experiments). Statistical analysis of fold-repression

values was performed by unpaired Student’s t test.

(F) Expression of the Mrc1 gene in BMDMs (MF; either untreated or stimulated as indicated), P388D1 and RAW264.7 cells. Data show mean DCt values ±SEM

versus b2 m; n = 2–3 independent experiments. Statistical analysis of DCt values was performed by unpaired Student’s t test.

(G) Endogenous miR-511-5p and -3p activity in BMDMs (MF; either untreated or stimulated as indicated), P388D1 and RAW264.7 cells. The histograms show

GFP repression (mean values ±SEM versus no-miRT control; n = 2–8 independent experiments). Statistical analysis of fold-repression values was performed by

unpaired Student’s t test.

(H) MRC1 protein expression in BMDMs either untreated or stimulated as indicated. The black open line is the fluorescence minus one (FMO) control for the anti-

MRC1 antibody. Data are representative of two independent experiments.

(I) Endogenous miR-511-3p activity in IL-4-stimulated BMDMs. Top panels showMRC1 protein in BMDMs either untreated or stimulated by IL-4; cell nuclei were

stained by DAPI. Bottom panels show GFP in IL-4-stimulated BMDMs either transduced with the no-miRT or miRT-511-3p reporter LV; the cell’s actin cyto-

skeleton was stained by phalloidin.

(J) Correlation betweenGFP repression andMRC1 protein in BMDMs either untreated or stimulatedwith IL-4; the cells were previously transducedwith themiRT-

511-5p, -3p, or no-miRT reporter LVs. GFP expression wasmeasured after fractionating the cells according to different MRC1 protein levels (Neg, negative; Low;

Int, intermediate; High; see H). Statistical analysis was performed by Spearman’s rank correlation test.
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robustly modulate MRC1 expression in cultured BMDMs (Stein
et al., 1992). Interestingly, we found that the degree of GFP
repression tightly correlated with the expression of the endoge-
nous Mrc1 gene in cells transduced with the miRT-511-3p but
not -5p reporter LV (Figures 1F and 1G; p < 0.02 by Spearman’s
rank correlation test). As seen in overexpression experiments
(Figure 1E), endogenous miR-511 repressed GFP much more
efficiently in cells transduced with the miRT-511-3p than -5p
reporter LV (Figure 1G). Finally, we found that GFP repression
by miR-511-3p (but not -5p) also correlated with MRC1 protein
levels (Figures 1H–1J). Together, these data corroborate the
notion that miRT-511-3p is the active strand of miR-511, and
strongly suggest that the Mrc1 gene and miR-511 are transcrip-
tionally coregulated.

Robust and Preferential Activity of miR-511-3p
in MRC1+ TAMs
In order to analyze the expression pattern and activity of miR-
511 in vivo, we implemented the aforementioned reporter
system in a model of hematopoietic stem (HS)/PC transplanta-
tion. We transduced HS/PCs obtained from the BM of C57BL/
6 mice with the miRT-511-5p, -3p, or no-miRT reporter LV, and
transplanted the transduced cells into irradiated, syngenic
mice. Lewis lung carcinoma (LLC) cells were injected subcuta-
neously 4 weeks after the transplant, and the tumors were
grown for an additional 4 weeks. We then measured the
degree of GFP repression in a variety of circulating and
tumor-infiltrating myeloid cells, including circulating ‘‘resident’’
and ‘‘inflammatory’’ monocytes, circulating granulocytes, F4/
80+MRC1+CD11clow and F4/80+CD11c+MRC1low TAMs, and
tumor-infiltrating granulocytes/immature myeloid cells (iMCs).
It should be noted that the majority of TAMs are MRC1+ in
LLCs grown in C57BL/6 mice (Figure S2A).
We did not detect GFP repression in blood cells (granulocytes,

inflammatory and resident monocytes) or tumor-infiltrating
granulocytes/iMCs, indicating that neither miR-511-3p nor -5p
are detectably active in these cells (Figure 2A). Conversely, we
detected GFP repression in MRC1+ and, to a lesser extent,
CD11c+ TAMs carrying miRT-511-3p but not -5p target
sequences (Figure 2A). These in vivo data confirm that miR-
511-3p is the active strand of the mouse pre-miR-511, and
demonstrate that endogenous miR-511-3p is preferentially
active in MRC1+ TAMs among tumor-infiltrating and circulating
myeloid cells.

Figure 2. Preferential Expression and Activity of miR-511-3p in
MRC1+ TAMs
(A) miR-511-3p activity in LLC grown in C57BL/6 mice. Left view shows flow

cytometry analysis of GFP and DLNGFR in MRC1+ and CD11c+ TAMs. Right

view illustrates GFP repression in the indicated cell types (versus no-miRT

control). Each dot in the scatterplot corresponds to onemouse (n = 4–6/group).

Statistical analysis of fold-repression values was performed by unpaired

Student’s t test.

(B) miR-511-3p activity in N202 mammary carcinomas grown in FVB/n mice

(n = 5–6 mice/group). Statistical analysis of fold-repression values was per-

formed by unpaired Student’s t test.

(C) GFP (green), MRC1 (red), andCD11c immunostaining or nuclear staining by

TO-PRO-3 (blue) of N202 mammary tumors grown in FVB/n mice. Arrows

indicate GFP+MRC1+ TAMs. Scale bars, 150 mm (left panels) and 30 mm

(RIGHT panels). Results are representative of four tumors/group.

(D) qPCR of selected miRNAs in MRC1+ and CD11c+ TAMs isolated from

MMTV-PyMT mammary tumors. The data show relative abundance of each

miRNA (mean values ±SEM versus Let7a; n = 3 biological samples). Statistical

analysis of DCt values was performed by unpaired Student’s t test.

(E) qPCR of selected mRNAs in MRC1+ and CD11c+ TAMs isolated from

MMTV-PyMT mammary tumors. The data show fold change (= 2DCt; mean

values ±SEM; n = 3 biological samples) versus CD11c+ TAMs (reference

population). Normalization was performed by interpolating Gapdh and b2 m.

Statistical analysis of DCt values was performed by unpaired Student’s t test.
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Figure 3. Preferential Expression and Activity of miR-511-3p in MRC1+ Tissue-Resident Macrophages
(A–D) Flow cytometry analysis of F4/80+ tissue-resident macrophages (further separated based onMRC1 and CD11c expression), Gr1+F4/80! granulocytes, and

CD11c+F4/80! DCs, in the indicated tissues/organs of FVB/n mice. Flow cytometry dot plots on the left show the gating strategy. The scatterplot on the right

shows GFP repression (versus no-miRT control) in the individual cell types. Each dot in the scatterplot corresponds to one mouse. Statistical analysis of fold-

repression values was performed by unpaired Student’s t test.
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To rule out that our findings aremouse strain or tumor specific,
we also analyzed miR-511-3p activity in FVB/n mice trans-
planted as above and challenged with N202 (Neu+) mammary
carcinomas (Figure 2B). It should be noted that, contrary to
LLCs, the majority of TAMs are CD11c+ in N202 tumors grown
in FVB/nmice (Figure S2B). As seen in LLCs, we observed robust
GFP repression (and thus miR-511-3p activity) in MRC1+ but not
CD11c+ TAMs or infiltrating granulocytes/iMCs in N202 tumors
analyzed at 4 weeks postinjection. These data were confirmed
by immunofluorescence staining of tumor sections, showing
lower GFP signal in MRC1+ than CD11c+ TAMs (Figure 2C).
These findings indicate that preferential activity of miR-511-3p
in MRC1+ TAMs is independent of the mouse strain, the tumor
type, or the relative abundance of the distinct TAM subsets.

In addition to miRNA activity, we analyzed miRNA abundance
by qPCR. We measured the expression of a panel of selected
miRNAs, including miR-511-5p and -3p, in both MRC1+ and
CD11c+ TAMs isolated from spontaneous MMTV-PyMT
mammary tumors (Mazzieri et al., 2011) by fluorescence-acti-
vated cell sorting (FACS). Although both miR-511-5p and -3p
were significantly upregulated in MRC1+ versus CD11c+ TAMs
(>10-fold), miR-511-3p levels were much higher than -5p levels
in either TAM subset (Figure 2D). Of note, expression of the
Mrc1 gene was "10-fold higher in MRC1+ than CD11c+ TAMs
(Figure 2E), suggesting that in vivo as in vitro (Figures 1G and
1J) the host gene and the miRNA are transcriptionally
coregulated.

miR-511-3p Is Preferentially Active in MRC1+ Tissue
Macrophages
In addition to protumoral TAMs (Qian and Pollard, 2010; Squa-
drito and De Palma, 2011), certain tissue-resident macrophage
populations express MRC1 (Gordon and Martinez, 2010; Marti-
nez et al., 2009). We then asked whether miR-511-3p is also
active in these cells. To this aim, we analyzed organs and tissues
of FVB/n mice transplanted 8 weeks earlier with HS/PCs trans-
duced with the miRT-511-3p or no-miRT reporter LVs (Figures
3A–3D). In agreement with the pattern of miR-511-3p activity in
tumor-infiltrating myeloid cells, we detected GFP repression
(and hence miR-511-3p activity) specifically in F4/80+Gr1!

macrophages that express distinctly high MRC1 protein. These
include MRC1+CD11c! adipose tissue macrophages (Chawla
et al., 2011), MRC1+ lung/alveolar macrophages (Landsman
and Jung, 2007), MRC1+CD11c! spleen red pulp macrophages,
andMRC1+CD11c! liver Kupffer cells (Taylor et al., 2005). On the
other hand, Gr1+F4/80! granulocytes, CD11chighF4/80! DCs,
and other MRC1-negative myeloid cells all displayed negligible
miR-511-3p activity (Figures 3A–3D).

To corroborate these findingswithmiRNA expression data, we
isolated macrophages from the adipose tissue by FACS, and
measured the expression of a panel of selected miRNAs,
including miR-511-5p and -3p. In agreement with the GFP

repression data, we observed significantly higher miR-511-3p
levels in MRC1+CD11c! than CD11c+MRC1! adipose tissue
macrophages (Figure 3E). As seen in TAMs (Figure 2E), miR-
511-3p levels were consistently higher than -5p levels in each
macrophage subset (Figure 3E). Of note, abundance of the
Mrc1 mRNA correlated with that of miR-511-3p (Figure 3F),
further supporting the notion that the host gene and the miRNA
are transcriptionally coregulated. Taken together, these data
demonstrate robust miR-511-3p expression and activity in
distinct MRC1+ tissue-macrophage subtypes.

ROCK2 Is a Direct Target of miR-511-3p
We then used TargetScan (Lewis et al., 2005) and DIANA microT
(Maragkakis et al., 2009) to identify miR-511-3p predicted
targets. The analysis retrieved a list of 145 genes (Table S1)
that we analyzed by DAVID Bioinformatic resources 6.7 (Huang
et al., 2009). We found that a significant proportion of these
genes are involved in biological processes related to ‘‘cell
morphogenesis’’ (Table S2).
To validate miR-511-3p predicted targets, we first generated

a mutant miR-511-3p sequence by substituting four nucleotides
in the pre-miR-511 sequence of the SFFV.miR-511 LV. Three out
of four substitutions are located in the seed sequence of miR-
511-3p, and were selected to not modify the complementary
miR-511-5p sequence and to not perturb the stem-loop struc-
ture of the pre-miRNA (Figure S3A). We termed the resultant
vector SFFV.miR-511-mut LV. To validate the mutant sequence,
we transduced RAW264.7monocytic cells with themiRT-511-5p
or -3p reporter LV, and superinfected the transduced cells with
the SFFV.miR-511 or -511-mut LV. As shown in Figure 4A, the
four mutated nucleotides in the miR-511-3p sequence
completely abrogated its activity.
We then performed dual-luciferase assays to test the 30 UTRs

of a small panel of miR-511-3p predicted targets, including Rho-
dependent kinase-2 (Rock2), a serine/threonine kinase that
regulates cell’s cytoskeleton contractility (Samuel et al., 2011).
We first transduced RAW264.7 cells with either SFFV.miR-511
or SFFV.miR-511-mut LV and, 1 week later, transfected the
dual-luciferase constructs in the transduced cells. We observed
robustRock2-UTR-dependent repression of luciferase activity in
SFFV.miR-511-overexpressing cells, but not SFFV.miR-511-
mut-overexpressing cells (Figure 4B). We further validated
miR-511-3p/Rock2-UTR interaction by testing the Rock2 30

UTR (as well as a mutated sequence; Figure S3B) in an in vitro
GFP repression assay based on our LV reporter system (Fig-
ure 4C; Extended Experimental Procedures). By this approach,
we confirmed direct interaction between miR-511-3p and the
Rock2 30 UTR.
Finally, we analyzed the expression of ROCK2 in RAW264.7

cells, P388D1 cells, and BMDMs engineered to overexpress
either miR-511 or miR-511-mut. miR-511-3p downregulated
ROCK2 both at the mRNA (Figures 4D and 4F) and protein

(E) qPCR of selected miRNAs in MRC1+ and CD11c+ adipose tissue macrophages isolated from FVB/n mice. The data show relative abundance of each miRNA

(mean values ±SEM versus Let7a; n = 3 biological samples). Statistical analysis of the data was performed on DCt values by unpaired Student’s t test.

(F) qPCR of selectedmRNAs in the adipose tissuemacrophages. The data show fold change (= 2DCt; mean values ±SEM; n = 3 biological samples) versus CD11c+

macrophages (reference population). Normalization was performed by b2m. Note that Tie2was undetectable in CD11c+macrophages. Statistical analysis ofDCt

values was performed by unpaired Student’s t test.
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Figure 4. ROCK2 Is a Direct Target of Mouse miR-511-3p
(A) GFP repression in RAW264.7 cells transduced with the miRT-511-5p or -3p LVs and superinfected with the miR-511 or -511-mut overexpressing LVs (mean

values ±SEM versus untransduced [UT] cells; n = 3 independent experiments). Statistical analysis of fold-repression values was performed by two-way ANOVA

with Bonferroni posttest.

(B) Firefly luciferase activity in 293T cells untransduced or transduced with either miR-511 or -511-mut LV. The 30 UTRs of mouse podoplanin (Pdpn),

semaphorin-3A (Sema3a), Rock2 (all miR-511-3p target genes), and CD163 were tested, together with a UTR-less plasmid (miRGLO). The Rock2 UTR was split

into two fragments (Rock2(1) and Rock2(2)). The box-and-whisker graph shows luciferase activity (median ±minimum/maximum values versus miRGLO; n = 6–9

technical replicates from 3 independent experiments). Statistical analysis was performed by two-way ANOVA with Bonferroni posttest.

(C) GFP repression in P388D1 cells transduced with GFP reporter LVs containing either wild-type or mutant UTR sequences from the Rock2 gene. Cells were

superinfected with either miR-511 or -511-mut overexpressing LV. Data show fold change of GFP repression (mean ± SEM; n = 3 independent experiments).

Statistical analysis was performed by two-way ANOVA with Bonferroni posttest.

(D) qPCR of Rock2 expression in RAW264.7 cells overexpressing either miR-511or -511-mut. The data show fold change (= 2DCt; mean values ±SEM; n = 3

biological samples) versus untransduced cells (reference population). Normalization was performed by b2 m. Statistical analysis was performed on actual DCt

values by unpaired Student’s t test.

(E) Western blot analysis of ROCK2 in RAW264.7 cells either overexpressing miR-511 or -511-mut. The left histograms show quantification of ROCK2/GAPDH

signal (normalized tomiR-511-mut; seven technical replicates from three independent experiments). Statistical analysis was performed by paired Student’s t test.

A representative blot is shown on the right.

(F) qPCR ofRock2 expression in P388D1 cells overexpressing either miR-511or -511-mut. The data show fold change (= 2DCt; mean values ±SEM; n = 3 biological

samples) versus untransduced cells (reference population). Normalization was performed by Hprt. Statistical analysis of DCt values was performed by unpaired

Student’s t test.

(G andH)Western blot analysis of ROCK2 in P388D1 cells (G) or BMDMs (H) overexpressing eithermiR-511 or -511-mut. Analysis as in (E) (P388D1: nine technical

replicates, three independent experiments; BMDMs: four technical replicates, two independent experiments).
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(Figures 4E, 4G, and 4H) level. Taken together, these data dem-
onstrate that ROCK2 is a direct target of mouse miR-511-3p.

The Human MRC1 Gene Encodes for an Active
miR-511-3p Sequence
The humanMRC1 gene contains amiR-511 sequence (hsa-miR-
511) located in the fifth intron of the gene; of note, hsa-miR-511-
3p is a miRNA, currently not annotated in miRBase (http://www.
mirbase.org). The mature hsa-miR-511-3p but not -5p sequence
is conserved in M. musculus and H. sapiens (Figure S4A). We
then asked whether miR-511-3p activity is conserved in the
two species. To identify the active strand of the human miR-
511, we generated both reporter and overexpressing LVs
(Figure S4B), as described above for the mouse miR-511. We
transduced human U937 monocytic cells with the reporter LVs
and then superinfected the transduced cells with the overex-
pressing LVs. Analysis of GFP repression showed that, as in
the mouse system, miR-511-3p is the active strand of the human
pre-miR-511 (Figure 5A).

As in the mouse system, predicted targets of humanmiR-511-
3p (Table S3) comprise genes involved in biological processes
related to ‘‘cell morphogenesis’’ (Table S4). Overexpression of
human miR-511-3p decreased ROCK2 protein in U937 cells
(Figure 5B), suggesting that ROCK2 is a direct target of human
miR-511-3p, as predicted by TargetRank (Nielsen et al., 2007).
We confirmed this finding by analyzing human miR-511-3p/
ROCK2-UTR interaction in an in vitro GFP repression assay
based on our reporter LV system (Figure 5C; Extended Experi-
mental Procedures). Together, these data strongly suggest that
miR-511-3p activity is conserved in mice and humans.

Overexpression of miR-511-3p in BM-Derived Cells
Inhibits Tumor Growth and Alters Tumor Blood Vessel
Morphology
To study the biological function of mouse miR-511-3p, we over-
expressed it in BM-derived hematopoietic cells. To this aim, we

transduced HS/PCs obtained from CD45.1/C57BL/6 mice with
either SFFV.miR-511 or -511-mut LV, and transplanted the
transduced cells into irradiated, congenic CD45.2/C57BL/6
mice, to obtain SFFV.miR-511 and SFFV.miR-511-mut mice,
respectively. Four weeks after the transplant, we inoculated
LLC cells subcutaneously in the transplanted mice and moni-
tored tumor growth for 3–4 weeks.
Unexpectedly, miR-511-3p overexpression in hematopoietic

cells inhibited LLC growth (Figure 6A). We could reasonably
exclude that tumor growth inhibition by miR-511-3p overexpres-
sion was due to defective hematopoiesis and/or altered recruit-
ment of hematopoietic cells to the tumors. Indeed, miR-511-3p
overexpression in hematopoietic cells did not affect the repo-
pulating activity of the transduced HS/PCs, as shown by the
similarly high frequency of CD45.1+OFP+, donor-transduced
hematopoietic cells in the blood of both groups of mice (Fig-
ure S5A). Furthermore, miR-511-3p overexpression neither
affected the recruitment of F4/80+ TAMs (which represent up
to 60% of all tumor-infiltrating hematopoietic cells in this tumor
model), Gr1+ neutrophils, NK, T and B cells to the tumors (Fig-
ure S5B), nor the relative frequency of MRC1+ and CD11c+

TAM subsets (Figure S5C).
We then asked whether miR-511-3p overexpression influ-

enced tumor angiogenesis. Although we did not observe
changes in vascular density by immunofluorescence staining
of tumor sections (data not shown), we noted that miR-511-3p
overexpression altered the architecture of the tumor microvas-
cular network by augmenting blood vessel tortuosity and the
occurrence of enlarged, glomerular-like structures (Figures 6B
and 6C). Accordingly, morphometric analysis of thick tumor
sections showed similar vascular area but significantly reduced
total and mean length of blood vessels in SFFV.miR-511
compared with -511-mut mice (Figure 6D). Together, these
data indicate that miR-511-3p overexpression in BM-derived
cells inhibits tumor growth and dysregulates angiogenesis
without affecting hematopoiesis detectably.

Figure 5. ROCK2 Is a Direct Target of Human miR-
511-3p
(A) miR-511-3p and -5p activity in U937 cells over-

expressing either miR-511 or -511-mut. The histogram

shows GFP repression (mean values ±SEM versus un-

transduced cells; n = 3 independent experiments).

Statistical analysis of fold-repression values was per-

formed by two-way ANOVA with Bonferroni posttest.

(B) Western blot analysis of ROCK2 in U937 cells over-

expressing either miR-511 or -511-mut. The left histo-

grams show quantification of ROCK2/GAPDH signal

(normalized to miR-511-mut; nine technical replicates

from three independent experiments). Statistical analysis

was performed by paired Student’s t test. A representative

blot is shown on the right.

(C) GFP repression in U937 cells transduced with GFP

reporter LVs containing either wild-type or mutant UTR

sequences from the ROCK2 gene. Cells were super-

infected with either miR-511 or -511-mut overexpressing

LV. Data show fold change of GFP repression (mean ±

SEM; n = 3 independent experiments). Statistical analysis

was performed by two-way ANOVA with Bonferroni

posttest.
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Overexpression of miR-511-3p in TAMs Globally
Downregulates miR-511-3p Predicted Target Genes
Because the genetic programs of TAMs may influence tumor
angiogenesis and growth (Qian and Pollard, 2010), we asked
whether miR-511-3p overexpression had modulated TAM’s
gene expression. To address this question, we sorted F4/
80+OFP+ TAMs from LLCs grown in SFFV.miR-511 or -511-
mut mice. qPCR analysis of selected miRNAs showed that the
SFFV.miR-511 LV upregulated the expression of miR-511-3p
by"5-fold in the F4/80+OFP+ TAMs of SFFV.miR-511 compared
to -511-mut mice, which only express the endogenous miR-511-
3p sequence (Figure 7A). Of note, miR-511-3p-mut was only
detected in the TAMs of SFFV.miR-511-mut mice, whereas
miR-511-5p was expressed by both SFFV.miR-511 and
SFFV.miR-511-mut TAMs. However, as seen in the TAMs of
MMTV-PyMT mice (Figure 2D), expression of miR-511-5p was
much lower than miR-511-3p, strongly suggesting that, even
when overexpressed, it is rapidly degraded in vivo.
We then performed RNA-Seq analyses of the transcriptome

of sorted F4/80+OFP+ TAMs. We used the Illumina HiSeq
2000 platform and retrieved 249 genes (out of 16,355; 1.5%;

p < 0.05 adjusted for false discovery rate) that were differentially
expressed in the TAMs of SFFV.miR-511 versus -511-mut mice
(Table S5). Remarkably, it was found that the predicted targets of
miR-511-3p (Table S1) were globally downregulated by miR-
511-3p overexpression in TAMs (Figure 7B). We also used
TargetRank to identify transcripts that contain in their 30 UTR at
least one sequence with perfect complementarity to the seed
sequence of miR-511-3p (i.e., M8-A1 8-mer and M8 7-mer
binding sites; Table S6), and found that such transcripts were
globally downregulated by miR-511-3p overexpression (Fig-
ure 7C; see Extended Experimental Procedures). Conversely,
genes containing M8-A1 8-mer or M8 7-mer binding sites for
either miR-511-5p or -3p-mut were significantly less downregu-
lated by miRNA overexpression (Figures 7D and 7E). These data
demonstrate broad and robust miR-511-3p activity in TAMs by
our overexpression platform.

Overexpression of miR-511-3p Tunes down the
Protumoral Gene Signature of MRC1+ TAMs
Although the vast majority of the differentially expressed genes
were downregulated by miR-511-3p overexpression in TAMs

Figure 6. miR-511-3p Overexpression in TAMs Inhibits Tumor Growth and Alters Blood Vessel Morphology
(A) LLC growth in mice overexpressing either miR-511or -511-mut in hematopoietic cells. Data show tumor volumes (mean values ±SEM; n = 11 mice/group).

Statistical analysis was performed by unpaired Student’s t test. One representative experiment of two performed is shown.

(B) Whole-mount visualization of blood vessels by Microfill perfusion. LLCs (n = 5/group) were grown in mice overexpressing either miR-511 or -511-mut in

hematopoietic cells.

(C) Representative 200-mm-thick tumor sections (of eight sections/tumor and n = 5 tumors/group). The inset in the bottom panel shows blood vessels with

glomerular morphology. Scale bar, 200 mm.

(D) Morphometric analysis of blood vessels in LLCs (n = 5/group) grown in mice overexpressing either miR-511or -511-mut in hematopoietic cells. Data were

obtained by analyzing eight sections/tumor (four from the tumor periphery and four from the central tumor mass) and n = 5 tumors/group. Data are expressed as

arbitrary units. Statistical analysis was performed by unpaired Student’s t test.
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Figure 7. miR-511-3p Overexpression in TAMs Tunes Down Their Protumoral Gene Signature
(A) qPCR of selectedmiRNAs in F4/80+OFP+ TAMs isolated from LLCs grown inmice overexpressing either miR-511 or -511-mut in hematopoietic cells. The data

show the relative abundance of each miRNA (mean values ±SEM versus Let7a; n = 4 biological samples). Statistical analysis of DCt values was performed by

unpaired Student’s t test.

(B) Cumulative distribution of fold changes in the whole transcriptome (13,747 genes; transcripts with less than 10 reads, andmiR-511-3p predicted targets were

excluded from the analysis) of TAMs overexpressing miR-511 (versus -511-mut; red line). The green line shows the cumulative distribution of fold changes in

transcripts that are miR-511-3p predicted targets (145 genes). Note the global repression of miR-511-3p target genes. Statistical analysis was performed by one-

sided Kolmogorov-Smirnov test.

(C–E) Cumulative distribution of fold changes in the whole transcriptome (13,747 genes; transcripts with less than 10 reads, and miR-511-3p predicted targets

were excluded) of TAMs overexpressing miR-511 (versus -511-mut; red line). The green and blue lines show the cumulative distribution of fold changes in

transcripts that contain M8-A1 8-mer and M8 7-mer target sites, respectively, for miR-511-3p (C), -5p (D), or -3p-mut (E). Statistical analysis was performed by

one-sided Kolmogorov-Smirnov test.
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(Table S5), they could not be identified as miR-511-3p direct
targets by TargetScan, DIANA microT, and TargetRank, and
possibly represent indirect targets of the miRNA. Interestingly,
the downregulated genes are primarily involved in biological
processes related to cell adhesion, morphogenesis, and ECM
organization (Table S7). They comprise genes encoding for
ECM proteins, such as collagens (e.g., type VI collagens), basal
lamina proteins, and proteoglycans. Downregulated genes also
include genes that control the synthesis and remodeling of the
ECM, such as proteases (e.g., Adamst1, Adamstl1, Mmp11,
Mmp3), scavenger receptors (e.g., Sparc and Mrc2), and TGF-
b family (e.g., Tgfbr3, Bmp1, Bmpr1a) or associated (Ltbp1)
factors. Latent TGF-b binding protein-1 (LTBP1) is a secreted
protein that has a role in the assembly, secretion, and activation
of latent complexes of TGF-b in the ECM; by activating TGF-b,
LTBP1 may stimulate ECM biosynthesis and enhance tumor
growth (Saunier and Akhurst, 2006). Consistent with RNA-Seq
analysis of TAMs (Table S5), miR-511-3p overexpression in
P388D1 cells and BMDMs decreased expression of LTBP1 at
the mRNA (Figure 7F) and protein (Figure 7G) level, respectively.
We and others previously showed that MRC1+ TAMs express

a distinguishing gene signature and are protumoral in mouse
models of cancer; genes upregulated in MRC1+ TAMs may
thus identify the protumoral gene signature of TAMs (Pucci
et al., 2009; Movahedi et al., 2010). We then hypothesized that
miR-511-3p overexpression inhibited tumor growth by attenu-
ating the protumoral genetic programs of MRC1+ TAMs. To
test this hypothesis, we first sorted MRC1+ and CD11c+ TAMs
from LLC tumors grown for 4 weeks in wild-type, nontrans-
planted C57BL/6 mice, and subjected the isolated cells to
RNA-Seq analysis. About 14% of the identified genes were
differentially expressed between MRC1+ and CD11c+ TAMs
(p < 0.05 adjusted for false discovery rate; Table S8), corrobo-
rating the notion that MRC1+ and CD11c+ TAMs represent
distinct cell subsets (Pucci et al., 2009). Of note, many of the
genes upregulated in MRC1+ versus CD11c+ TAMs encode for
molecules with previously established protumoral bioeffector
function (Table S8; Pucci et al., 2009). We then analyzed the
effects of miR-511-3p overexpression on the genes specifically
upregulated in either MRC1+ or CD11c+ TAMs. Interestingly,

miR-511-3p overexpression in TAMs tuned down the expression
of a significant proportion of the genes upregulated in MRC1+

TAMs, whereas it did not modulate genes upregulated in
CD11c+ TAMs (Figures 7H and 7I; Table S9). These data imply
that miR-511-3p may function as a negative regulator of TAM’s
protumoral genetic programs.
Although RNA-Seq profiling did not detect statistically signifi-

cant upregulation of Rock2 in MRC1+ versus CD11c+ TAMs
(while showing a clear trend toward statistical significance),
qPCR analyses consistently showed higher Rock2 expression
in MRC1+ than CD11c+ TAMs (Figure 7J). We, therefore, used
Rock2 as amodel gene representative of the MRC1+ TAM signa-
ture, and asked whether miR-511-3p could attenuate its upregu-
lation in MRC1+ macrophages. We measured Rock2 mRNA by
qPCR in BMDMs that overexpressed either SFFV.miR-511 or
SFFV.miR-511-mut and that were cultured in the presence of
IL-4 or left untreated. Consistent with our predictions, IL-4 upre-
gulated Rock2 in BMDMs, but this effect was abrogated by miR-
511-3p overexpression (Figure 7K). Because IL-4-stimulated
BMDMs may model protumoral TAMs in vitro (Biswas and
Mantovani, 2010), these data provide proof of concept that
miR-511-3p may function as a negative regulator of protumoral
gene expression in MRC1+ macrophages.

DISCUSSSION

In this study we show that upregulation of themannose receptor,
MRC1, in both tissue-resident and tumor macrophages is
accompanied by an increase of a previously uncharacterized
miRNA, miR-511-3p. The bioactivity of miR-511-3p correlates
with the magnitude of MRC1 expression in both tissue-resident
and tumor macrophages, suggesting that Mrc1 and miR-511-
3p are transcriptionally coregulated. By employing a genetic
strategy to stably overexpress miRNAs in BM-derived cells, we
found that miR-511-3p broadly and specifically attenuates the
expression of genes that define the protumoral signature of
MRC1+ TAMs (Pucci et al., 2009; Movahedi et al., 2010). Consis-
tent with this finding, miR-511-3p overexpression inhibited
tumor growth. On the other hand, miR-511-3p overexpression
did not alter the proinflammatory gene signature of CD11c+

(F) qPCR of Ltbp1 expression in P388D1 cells overexpressing either miR-511or -511-mut. The data show fold change (= 2DCt; mean values ±SEM; n = 3 biological

samples) versus miR-511-3p-mut (reference population). Normalization was performed by Hprt. Statistical analysis of DCt values was performed by unpaired

Student’s t test.

(G) Western blot analysis of LTBP1 in BMDMs either overexpressing mouse miR-511 or -511-mut. The left histograms show quantification of LTBP1/calnexin

(CLNX) signal (normalized to miR-511-mut; four technical replicates from two independent experiments). Statistical analysis was performed by paired Student’s t

test. A representative blot is shown on the right.

(H) Cumulative distribution of fold changes in the whole transcriptome (16,355 genes) of TAMs overexpressing miR-511 (versus -511-mut; red line). The green line

shows the cumulative distribution of fold changes in transcripts that are upregulated inMRC1+ TAMs (versus CD11c+ TAMs; 1,365 genes); The blue line shows the

cumulative distribution of fold changes in the transcripts that are upregulated in CD11c+ TAMs (versus MRC1+ TAMs; 1,596 genes). Statistical analysis was

performed by one-sided Kolmogorov-Smirnov test.

(I) Scatterplot distribution of fold changes in gene expression of MRC1+ and CD11c+ TAMs overexpressing miR-511 (versus -511-mut). The x axis shows the

upregulation of transcripts in MRC1+ versus CD11c+ TAMs (left; MRC1+ TAM gene signature) or CD11c+ versus MRC1+ TAMs; (right; CD11c+ TAM gene

signature). The y axis shows changes in gene expression by miR-511 overexpression (versus -511-mut). Transcripts with less than ten reads were excluded from

the analysis. Statistical analysis of the data is presented in (H).

(J) qPCR ofRock2 expression in MRC1+ and CD11c+ TAMs isolated from LLCs. The data show fold change (= 2DCt; mean values ±SEM; n = 2 biological samples)

versus CD11c+ TAMs (reference population). Normalization was performed by b2m. Statistical analysis ofDCt valueswas performed by unpaired Student’s t test.

(K) qPCR of Rock2 expression in BMDMs either untreated or stimulated by IL-4; the cells were transduced with either miR-511 or -511-mut overexpressing LV.

Data show fold change in Rock2 repression (mean ± SEM; n = 3 independent experiments) versus untreated cells. Note that miR-511 overexpression abrogates

IL-4-induced Rock2 upregulation in the cells. Statistical analysis was performed by two-way ANOVA with Bonferroni posttest.
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macrophages (Pucci et al., 2009; Movahedi et al., 2010), sug-
gesting specific activity of themiRNA in a TAM subtype. Interest-
ingly, miR-511-3p was most biologically active in tissue-resident
macrophages bearing features of AAMs (Chawla et al., 2011;
Gordon and Martinez, 2010; Landsman and Jung, 2007; Marti-
nez et al., 2009). These cells are known to participate in both
pathological and physiological processes, including host
defense from parasites, stimulation of angiogenesis and tissue
repair, promotion of tissue fibrosis, and regulation of organ
metabolism (Gordon and Martinez, 2010). Future studies are
now needed to address the significance of miR-511-3p in the
regulation of alternative activation of macrophages.

Interestingly, miR-511-3p downregulated TAM expression of
multiple genes involved in ECM synthesis and remodeling; these
include collagens and other fibrous proteins, proteases, and
scavenger receptors. Of note, the composition and biophysical
properties of the ECM influence tumor growth and progression.
Increased collagen deposition/crosslinking and ECM stiffening
stimulate tumor cell proliferation, invasion, and malignancy
(Egeblad et al., 2010; Levental et al., 2009). Furthermore, the
composition and biophysical properties of the ECM regulate
vascular morphogenesis in tumors (Bauer et al., 2009). Indeed,
ECM density controls the extension speed of vascular sprouts,
and a high matrix-fiber anisotropy (i.e., directional tension)
provides strong contact guidance cues for endothelial cells
and stimulates sprout branching (Bauer et al., 2009). Although
ECM fibrous proteins are mainly produced by fibroblasts and
epithelial cells (Egeblad et al., 2010; Kalluri and Zeisberg,
2006), there is also evidence that some collagens and
other ECM proteins may be robustly expressed by in vitro-
cultured macrophages (Schnoor et al., 2008). Yet, the signifi-
cance of TAM-produced ECM fibrous proteins for tumor
growth and vascularization has remained largely unexplored.
Our deep sequencing analyses indicate that MRC1+ TAMs
express several ECM genes (including genes encoding for
collagens and other fibrous proteins), which were globally and
significantly downregulated by miR-511-3p overexpression in
TAMs. Because MRC1+ TAMs represent a major component
of the perivascular tumor stroma and support vascular morpho-
genesis in tumors (Mazzieri et al., 2011; Squadrito and De Palma,
2011), modulation of ECM-protein synthesis/remodeling by
miR-511-3p in MRC1+ TAMs may have the potential to influence
ECM dynamics in the perivascular microenvironment. This
would be consistent with our finding that miR-511-3p overex-
pression in TAMs altered the morphology of intratumoral blood
vessels, possibly as a consequence of changes in the biophys-
ical properties of the perivascular ECM (and/or in the levels
of TAM-derived angiogenic factors). It is also possible that
miR-511-3p is horizontally transferred from MRC1+ TAMs to
other tumor-associated stromal cells via microvesicles or exo-
somes (Yang et al., 2011).

We identified ROCK2 as a direct target of miR-511-3p. Our
data indicate that MRC1+ TAMs as well as IL-4-polarized
BMDMs express higher Rock2 mRNA levels than
CD11c+MRC1! TAMs or unstimulated BMDMs. Of note, consti-
tutive ROCK activation in epidermal cells increases collagen
synthesis and tissue stiffness (Samuel et al., 2011). It is tempting
to speculate that increased ROCK activity inMRC1+ TAMsmight

enhance their expression and secretion of ECM proteins as part
of their protumoral genetic program. Because miR-511-3p
downregulated ROCK2 both at the mRNA and protein level,
our data suggest that miR-511-3p might negatively regulate
ROCK activity in MRC1+ TAMs and downregulate their expres-
sion of ECM genes relevant to tumor progression.
Although several miRNAs have been identified that regulate

immune cell functions (O’Connell et al., 2010), little is known of
their roles in themodulation of TAM heterogeneity and functions.
A recent report used IlluminamiRNAChips to analyze themiRNA
expression signature of human monocytes and monocyte-
derived DCs/macrophages (Tserel et al., 2011). Several miRNAs
were found to be differentially expressed between DCs/macro-
phages and freshly isolated monocytes. Among these, human
miR-511 (representing the hsa-miR-511-5p sequence described
in our study) was highly upregulated in DCs/macrophages
(Tserel et al., 2011). Although the report of Tserel and colleagues
may appear consistent with our findings, we did not detect
significant activity of either human or mouse miR-511-5p in
several independent cell assays, both in vitro and in vivo.
Conversely, we identified miR-511-3p as the bioactive strand
of both human and mouse pre-miR-511. It should be noted,
however, that the humanmiR-511-3p sequence is not annotated
in miRBase and was not assayed in the Illumina miRNA Chips
employed by Tserel and colleagues, so its differential expression
could not be assessed (Tserel et al., 2011). Although the mech-
anisms that regulate miRNA strand selection are still unclear, it
is likely that the thermodynamic stability of the two ends of the
pre-miRNA determines which strand is to be selected for loading
into the RISC complex, and which is to be degraded (Khvorova
et al., 2003). Recent studies have also illustrated that miRNA
strand selection may be cell type, context, and species specific
(Biasiolo et al., 2011; Kuchenbauer et al., 2011). Nevertheless,
our analyses indicate that miR-511-3p but not -5p is highly
conserved across mammalian species, pointing to a preeminent
role of this miRNA strand. Further studies are, therefore, needed
to clarify the significance of miR-511-5p expression and activity
in macrophages.
In summary our findings reveal an unexpected layer of gene

expression control in TAMs, which relies on an endogenous
molecular switch that is activated in a tumor-promoting
(MRC1+) subset of these cells. Enhancing miR-511-3p activity
in TAMs (e.g., via delivery of macrophage-targeted miRNA
carriers) may represent a therapeutic strategy to reprogram
them from a protumoral to an antitumoral phenotype.

EXPERIMENTAL PROCEDURES

Detailed experimental procedures are presented as Extended Experimental

Procedures.

Mice
C57BL/6, CD45.1/C57BL/6, and FVB/nmice were purchased by Charles River

Laboratory (Calco, Milan). FVB/MMTV-PyMT mice were obtained from the

NCI-Frederick Mouse Repository (Frederick, MD) and established as a colony

at the San Raffaele animal facility. All procedures were performed according to

protocols approved by the Animal Care and Use Committee of the Fondazione

San Raffaele del Monte Tabor (IACUC 324, 335, and 447) and communicated

to the Ministry of Health and local authorities according to the Italian law.
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LV Transduction
For experiments in vitro, cells were transduced with LV doses ranging from 104

to 105 transducing units (TU)/ml. When required, sequential transduction was

performed by (i) transducing the cells with the first LV; (ii) washing and replating

the cells; and (iii) transducing the cells with the second LV (superinfection) on

day 5–7 after the first transduction. For HS/PC transplantation, 106 HS/PCs/ml

were prestimulated for 6 hr in serum-freemedium containing a cocktail of cyto-

kines, and then transduced with miRT reporter or miR-511-overexpressing

LVs with a dose equivalent to 108 TU/ml. After transduction, 106 cells were

infused into the tail vein of lethally irradiated mice

Tumor Experiments
LLC/3LL cells (5 3 106) were injected subcutaneously in syngenic C57BL/6

mice, and tumors were grown for 3–4 weeks; tumor size was determined by

caliper measurements. N202 mammary carcinoma cells (5 3 106) were in-

jected subcutaneously in syngenic FVB/n mice, and tumors were grown for

4 weeks.

For miRT reporter studies we performed two independent experiments. In

the first experiment, transduced HS/PCs were transplanted in irradiated

C57BL/6 mice, which were subsequently challenged with LLC cells. In the

second experiment, transduced HS/PCs were transplanted in irradiated

FVB/nmice, subsequently challengedwith N202 cells. FormiR overexpression

studies we performed three independent experiments. In each experiment,

transduced HS/PCs were transplanted in irradiated C57BL/6 mice, subse-

quently challenged with LLC cells; tumor growth was analyzed for 3–4 weeks

in the first two experiments. In the first experiment, tumorswere also harvested

for sorting of TAMs and RNA-Seq analysis. In the second experiment, mice

were randomly selected for Microfill perfusion and analysis of the tumor-asso-

ciated vasculature. In the third experiment, tumors were harvested for sorting

of TAMs and qPCR of miRNAs.

Calculation of miRNA Activity
In most of the experiments, we calculated miR-511-mediated GFP repression

(indicated as ‘‘fold-repression’’) in live cells by using the following equation:

h
MFI DLNGFRmiRT 3 ðMFI GFPmiRTÞ!1

i.h
MFI DLNGFRno-miRT

3 ðMFI GFPno-miRTÞ!1
i
;

where MFI is the mean fluorescence activity of either GFP or DLNGFR

measured by flow cytometry.

Statistical Analysis
Statistical analysis of the data is described in the figure legends and Extended

Experimental Procedures. Statistical significance of the data is indicated as

follows: *: p < 0.05; **: p < 0.01; ***: p < 0.001.

ACCESSION NUMBERS

RNA sequencing data (12 TAM samples) have been deposited in the GEO

repository at NCBI under accession number GSE34903.
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