166 research outputs found

    Anaerobic Contributions Are Influenced by Active Muscle Mass and The Applied Methodology in Well-Controlled Muscle Group

    Get PDF
    International Journal of Exercise Science 15(7): 599-615, 2022. The anaerobic metabolism determination is complex and the applied methodologies present limitations. Thus, the purpose of this study was to investigate the effects of different calculations (MAOD vs. AOD) on the anaerobic contribution using the dynamic knee extension. Twenty-four male were recruited [Mean (SD); age 27 (1) years, body mass 90 (3) kg, height 181 (2) cm]. This study was divided into two independent experiments (EXP1: ­one-legged; EXP2: two-legged). In both experiments, it was performed a graded exercise test to determine maximal power (MP-GXT); 2-4 submaximal efforts (VO2-intensity relationship); and an exhaustive effort. The theoretical energy demand for the exhaustive effort (TEDex) was constructed from the submaximal efforts. Therefore, MAOD was assumed as the difference between the TEDex and the accumulated VO2 (AVO2). In contrast, the energy demand for AOD was calculated as the product between VO2 at the end of exercise and time to exhaustion (TEDaod). Thus, AOD was assumed as the difference between TEDaod and AVO2. Bayesian paired t-test was used to compare the differences between the applied methods. Also, correlations between the anaerobic indices and performance were verified. In EXP1, AOD was higher than MAOD [1855 (741) vs. 434 (245); BF10 = 2925; ES = 2.5]. In contrast, in EXP2, MAOD was higher than AOD [2832 (959) vs. 1636 (549); BF10 = 3.33; ES = 1.4]. Also, AOD was correlated to performance (r = .59; BF10 = 4.38). We concluded that MAOD and AOD are a distinct phenomenon and must be utilized according to the exercise model

    Determination Of Vo2-intensity Relationship And Maod In Tethered Swimming

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)This study aimed to test the reproducibility of the maximal accumulated oxygen deficit (MAOD) values and VO2-intensity relationship parameters as measured during tethered swimming. 9 swimmers performed an incremental test to determine the maximal aerobic force (MAF), 6 submaximal efforts to develop VO2-intensity relationship, and an exhaustive effort to determine MAOD. The tests were performed twice. The reproducibility of the measurements was tested using intraclass correlation (ICC), typical error (TE) and coefficient of variation (CV). High levels of reproducibility were observed for MAF (TE = 2.6 N; CV = 4.3 %; ICC = 0.98) and VO2-intensity relationship parameters, as intercept (TE = 0.01 L.min(-1); CV = 11.4 %; ICC = 0.97), slope (TE = 0.002 L.min(-1). N-1; CV = 3.1 %; ICC = 0.97) and coefficient of determination (TE = 0.02; CV = 1.8 %; ICC = 0.47). The MAOD values measured during the test (2.9 +/- 1.1 L and 45.3 +/- 14.0 mL. Kg(-1)) and retests (2.9 +/- 1.1 L and 45.2 +/- 12.6 mL. Kg(-1)) were highly correlated (absolute values: ICC = 0.93; relative to body mass values: ICC = 0.89) and presented low values of TE (0.3 L and 4.3 mL. Kg(-1)) and CV (9.5 % for absolute and 9.6 % for relative to body mass values). Thus, we demonstrated the potential use of tethered swimming to assess anaerobic capacity in an aquatic environment.379687693Fundacao de Amparo a pesquisa do Estado de Sao Paulo [2011/05357-9, 2011/16195-0]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    3D Bioprinted cancer models: Revolutionizing personalized cancer therapy

    Full text link
    After cardiovascular disease, cancer is the leading cause of death worldwide with devastating health and economic consequences, particularly in developing countries. Inter-patient variations in anti-cancer drug responses further limit the success of therapeutic interventions. Therefore, personalized medicines approach is key for this patient group involving molecular and genetic screening and appropriate stratification of patients to treatment regimen that they will respond to. However, the knowledge related to adequate risk stratification methods identifying patients who will respond to specific anti-cancer agents is still lacking in many cancer types. Recent advancements in three-dimensional (3D) bioprinting technology, have been extensively used to generate representative bioengineered tumor in vitro models, which recapitulate the human tumor tissues and microenvironment for high-throughput drug screening. Bioprinting process involves the precise deposition of multiple layers of different cell types in combination with biomaterials capable of generating 3D bioengineered tissues based on a computer-aided design. Bioprinted cancer models containing patient-derived cancer and stromal cells together with genetic material, extracellular matrix proteins and growth factors, represent a promising approach for personalized cancer therapy screening. Both natural and synthetic biopolymers have been utilized to support the proliferation of cells and biological material within the personalized tumor models/implants. These models can provide a physiologically pertinent cell–cell and cell–matrix interactions by mimicking the 3D heterogeneity of real tumors. Here, we reviewed the potential applications of 3D bioprinted tumor constructs as personalized in vitro models in anticancer drug screening and in the establishment of precision treatment regimens

    Bioengineered microfluidic blood-brain barrier models in oncology research

    Get PDF
    Metastasis is the major reason for most brain tumors with up to a 50% chance of occurrence in patients with other types of malignancies. Brain metastasis occurs if cancer cells succeed to cross the ?blood-brain barrier? (BBB). Moreover, changes in the structure and function of BBB can lead to the onset and progression of diseases including neurological disorders and brain-metastases. Generating BBB models with structural and functional features of intact BBB is highly important to better understand the molecular mechanism of such ailments and finding novel therapeutic agents targeting them. Hence, researchers are developing novel in vitro BBB platforms that can recapitulate the structural and functional characteristics of BBB. Brain endothelial cells-based in vitro BBB models have thus been developed to investigate the mechanism of brain metastasis through BBB and facilitate the testing of brain targeted anticancer drugs. Bioengineered constructs integrated with microfluidic platforms are vital tools for recapitulating the features of BBB in vitro closely as possible. In this review, we outline the fundamentals of BBB biology, recent developments in the microfluidic BBB platforms, and provide a concise discussion of diverse types of bioengineered BBB models with an emphasis on the application of them in brain metastasis and cancer research in general. We also provide insights into the challenges and prospects of the current bioengineered microfluidic platforms in cancer research.Scopu

    can a rapid local cooling intervention help young soccer players?

    Get PDF
    The effects of a cooling strategy following repeated high-intensity running (RHIR) on soccer kicking performance in a hot environment (>30ºC) were investigated in youth soccer players. Fifteen academy under-17 players participated. In Experiment 1, players completed an all-out RHIR protocol (10×30 m, with 30s intervals). In Experiment 2 (cross-over design), participants performed this running protocol under two conditions: (1) following RHIR 5 minutes of cooling where ice packs were applied to the quadriceps/hamstrings, (2) a control condition involving passive resting. Perceptual measures [ratings of perceived exertion (RPE), pain and recovery], thigh temperature and kick-derived video three-dimensional kinematics (lower limb) and performance (ball speed and two-dimensional placement indices) were collected at baseline, post-exercise and intervention. In Experiment 1, RHIR led to small- to-large impairments (p < 0.03;d = −0.42–-1.83) across perceptual, kinematic and performance measures. In experiment 2, RPE (p < 0.01; Kendall’s W = 0.30) and mean radial error (p = 0.057; η2 = 0.234) increased only post-control. Significant small declines in ball speed were also observed post-control (p < 0.05; d = 0.35). Post-intervention foot centre-of-mass velocity was moderately faster in the cooling compared to control condition (p = 0.04; d = 0.60). In youth soccer players, a short cooling period was beneficial in counteracting declines in kicking performance, in particular ball placement, following intense running activity in the heat.9E1A-F9DD-3EB8 | Filipe Manuel ClementeN/

    3D Bioprinted cancer models: Revolutionizing personalized cancer therapy

    Get PDF
    After cardiovascular disease, cancer is the leading cause of death worldwide with devastating health and economic consequences, particularly in developing countries. Inter-patient variations in anti-cancer drug responses further limit the success of therapeutic interventions. Therefore, personalized medicines approach is key for this patient group involving molecular and genetic screening and appropriate stratification of patients to treatment regimen that they will respond to. However, the knowledge related to adequate risk stratification methods identifying patients who will respond to specific anti-cancer agents is still lacking in many cancer types. Recent advancements in three-dimensional (3D) bioprinting technology, have been extensively used to generate representative bioengineered tumor in vitro models, which recapitulate the human tumor tissues and microenvironment for high-throughput drug screening. Bioprinting process involves the precise deposition of multiple layers of different cell types in combination with biomaterials capable of generating 3D bioengineered tissues based on a computer-aided design. Bioprinted cancer models containing patient-derived cancer and stromal cells together with genetic material, extracellular matrix proteins and growth factors, represent a promising approach for personalized cancer therapy screening. Both natural and synthetic biopolymers have been utilized to support the proliferation of cells and biological material within the personalized tumor models/implants. These models can provide a physiologically pertinent cell–cell and cell–matrix interactions by mimicking the 3D heterogeneity of real tumors. Here, we reviewed the potential applications of 3D bioprinted tumor constructs as personalized in vitro models in anticancer drug screening and in the establishment of precision treatment regimens.Scopu

    A case study in identifying acceptable bitrates for human face recognition tasks

    Get PDF
    Face recognition from images or video footage requires a certain level of recorded image quality. This paper derives acceptable bitrates (relating to levels of compression and consequently quality) of footage with human faces, using an industry implementation of the standard H.264/MPEG-4 AVC and the Closed-Circuit Television (CCTV) recording systems on London buses. The London buses application is utilized as a case study for setting up a methodology and implementing suitable data analysis for face recognition from recorded footage, which has been degraded by compression. The majority of CCTV recorders on buses use a proprietary format based on the H.264/MPEG-4 AVC video coding standard, exploiting both spatial and temporal redundancy. Low bitrates are favored in the CCTV industry for saving storage and transmission bandwidth, but they compromise the image usefulness of the recorded imagery. In this context, usefulness is determined by the presence of enough facial information remaining in the compressed image to allow a specialist to recognize a person. The investigation includes four steps: (1) Development of a video dataset representative of typical CCTV bus scenarios. (2) Selection and grouping of video scenes based on local (facial) and global (entire scene) content properties. (3) Psychophysical investigations to identify the key scenes, which are most affected by compression, using an industry implementation of H.264/MPEG-4 AVC. (4) Testing of CCTV recording systems on buses with the key scenes and further psychophysical investigations. The results showed a dependency upon scene content properties. Very dark scenes and scenes with high levels of spatial–temporal busyness were the most challenging to compress, requiring higher bitrates to maintain useful information

    Dynamics of Recovery of Physiological Parameters After a Small-Sided Game in Women Soccer Players

    Get PDF
    Purpose: Training methods based on small-sided game (SSG) seem to promote physiological and tactical benefits for soccer players as they present characteristics more specific to the game. Thus, the main objective of the present study was to analyze the hormonal, biochemical, and autonomic parameters in an acute manner and the recovery dynamics (up to 72 h after) in a SSG.Methods: Thirteen professional female soccer players participated in the study (18.8 ± 0.8 years, body mass 59.4 ± 6.2 kg, and height 1.68 ± 0.05 m). During and after the SSG session (4 min × 4 min separated by 3 min of passive interval and 120 m2 coverage per player), autonomic modulation was analyzed in the time and frequency domains using heart rate variability, and blood samples (5 ml) were collected before (0 h) and after (10 min and 24, 48, 72 h) the SSG for biochemical and hormonal analysis.Results: The SSG induced an increase effect for LF (low frequency) (92,52%; Very likely increase) and a decrease effect for HF (high frequency) values (-65,72%; Very likely decrease), after 10 min of recovery. The LF/HF increase after 10 min of recovery (386,21%; Very likely increase). The RMSSD (square root of the mean squared differences of the successive N–N intervals) and pNN50 (measure of the number of adjacent NN intervals which differ by more than 50 ms) values presented a decrease effect 10 min after SSG (61,38%; Very likely decrease and-90%; Very likely decrease). The CK (creatine kinase) values presented no changes 10 min after SSG. The LDH (lactate dehydrogenase) values presented an increase effect 10 min after the SSG (19,22%; Likely increase). Both testosterone and cortisol concentrations presented the same behavior after SSG, where no alterations were observed with after 10 min (&lt;0,37%; Most likely trivial).Conclusion: The SSG promoted significant cardiovascular stress that was restored within the first 24 h of recovery. Parasympathetic parameters continued to increase while sympathetic parameters declined significantly during the 72 h of recovery. In addition, the reduced game did not alter biochemical or hormonal responses during the 72 h

    Bronchial artery embolization for management of massive cryptogenic hemoptysis: a case series

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hemoptysis constitutes a common and urgent medical problem. Swift and effective management is of crucial importance, especially in severe, life-threatening cases. In cases of idiopathic hemoptysis, in which no underlying pulmonary pathology can be identified, treatment is challenging. We report our experience with bronchial artery embolization in the treatment of massive idiopathic hemoptysis.</p> <p>Cases presentation</p> <p>We report three consecutive cases of acute severe idiopathic hemoptysis. Our patients (two men aged 51 and 56 years and one woman aged 46 years), were of Caucasian ethnicity. We discuss the results and management of the patients, and review the literature. All three patients were treated safely and successfully with transcatheter embolization of the bronchial arteries using tris-acryl gelatin microspheres. Hemoptysis was controlled. All cases were followed up for 12 months, and there was no recurrence of bleeding.</p> <p>Conclusion</p> <p>Bronchial artery embolization is an effective tool for the evaluation and treatment of massive idiopathic hemoptysis.</p
    corecore