269 research outputs found

    Decorin transfection induces proteomic and phenotypic modulation in breast cancer cells 8701-BC

    Get PDF
    Decorin is a prototype member of the small leucine-rich proteoglycan family widely distributed in the extracellular matrices of many connective tissues, where it has been shown to play multiple important roles in the matrix assembly process, as well as in some cellular activities. A major interest for decorin function concerns its role in tumorigenesis, as growth-inhibitor of different neoplastic cells, and potential antimetastatic agent. The aim of our research was to investigate wide-ranged effects of transgenic decorin on breast cancer cells. To this purpose we utilized the well-characterized 8701-BC cell line, isolated from a ductal infiltrating carcinoma of the breast, and two derived decorin-transfected clones, respectively, synthesizing full decorin proteoglycan or its protein core. The responses to the ectopic decorin production were examined by studying morphological changes, cell proliferation rates, and proteome modulation. The results revealed new important antioncogenic potentialities, likely exerted by decorin through a variety of distinct biochemical pathways. Major effects included the downregulation of several potential breast cancer biomarkers, the reduction of membrane ruffling, and the increase of cell-cell adhesiveness. These results disclose original aspects related to the reversion of malignant traits of a prototype of breast cancer cells induced by decorin. They also raise additional interest for the postulated clinical application of decori

    Identification of potential non-invasive biomarkers in diastrophic dysplasia.

    Get PDF
    Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by pathogenic variants in the SLC26A2 gene encoding for a cell membrane sulfate/chloride antiporter crucial for sulfate uptake and glycosaminoglycan (GAG) sulfation. Research on a DTD animal model has suggested possible pharmacological treatment approaches. In view of future clinical trials, the identification of non-invasive biomarkers is crucial to assess the efficacy of treatments. Urinary GAG composition has been analyzed in several metabolic disorders including mucopolysaccharidoses. Moreover, the N-terminal fragment of collagen X, known as collagen X marker (CXM), is considered a real-time marker of endochondral ossification and growth velocity and was studied in individuals with achondroplasia and osteogenesis imperfecta. In this work, urinary GAG sulfation and blood CXM levels were investigated as potential biomarkers for individuals affected by DTD. Chondroitin sulfate disaccharide analysis was performed on GAGs isolated from urine by HPLC after GAG digestion with chondroitinase ABC and ACII, while CXM was assessed in dried blood spots. Results from DTD patients were compared with an age-matched control population. Undersulfation of urinary GAGs was observed in DTD patients with some relationship to the clinical severity and underlying SLC26A2 variants. Lower than normal CXM levels were observed in most patients, even if the marker did not show a clear pattern in our small patient cohort because CXM values are highly dependent on age, gender and growth velocity. In summary, both non-invasive biomarkers are promising assays targeting various aspects of the disorder including overall metabolism of sulfated GAGs and endochondral ossification

    Desarrollo de los ventrículos laterales del cerebro durante el segundo trimestre de gestación identificados por resonancia magnética

    Get PDF
    El sistema ventricular del cerebro cambia su forma y tamaño durante el desarrollo fetal. Las modificaciones cronológicas están relacionadas al rápido crecimiento del parénquima cerebral por migración neuronal desde la matriz germinal, el desarrollo de las cisuras y surcos, el cuerpo calloso, la impronta de los núcleos de la base del cerebro y el tálamo. El objetivo del trabajo es describir los cambios morfológicos de los ventrículos laterales durante el segundo trimestre de gestación mediante el estudio con resonancia magnética de 20 fetos, 16 masculinos y 4 femeninos, de 16 semanas de edad gestacional media. Se utilizó un equipo de 1.5 Tesla con técnicas volumétricas 3D. Se registró la forma de cada ventrículo lateral mediante una línea central en una vista lateral 3D del cerebro. Además se comparó el diámetro vertical del cuerpo de cada ventrículo con el espesor del parénquima cerebral, correlacionando los datos con las semanas de edad gestacional, y el diámetro transverso del atrio ventricular. Los ventrículos laterales modificaron progresivamente su forma desde una línea curva esférica hasta una elíptica con cola desde la 12ª hasta la 20ª semanas de gestación. El diámetro vertical del cuerpo ventricular se redujo en éste periodo gestacional en comparación con el parénquima cerebral que incrementó notablemente su espeso

    Variable bone fragility associated with an Amish COL1A2 variant and a knock-in mouse model

    Get PDF
    Osteogenesis imperfecta (OI) is a heritable form of bone fragility typically associated with a dominant COL1A1 or COL1A2 mutation. Variable phenotype for OI patients with identical collagen mutations is well established, but phenotype variability is described using the qualitative Sillence classification. Patterning a new OI mouse model on a specific collagen mutation therefore has been hindered by the absence of an appropriate kindred with extensive quantitative phenotype data. We benefited from the large sibships of the Old Order Amish (OOA) to define a wide range of OI phenotypes in 64 individuals with the identical COL1A2 mutation. Stratification of carrier spine (L1–4) areal bone mineral density (aBMD) Z -scores demonstrated that 73% had moderate to severe disease (less than −2), 23% had mild disease (−1 to −2), and 4% were in the unaffected range (greater than −1). A line of knock-in mice was patterned on the OOA mutation. Bone phenotype was evaluated in four F 1 lines of knock-in mice that each shared approximately 50% of their genetic background. Consistent with the human pedigree, these mice had reduced body mass, aBMD, and bone strength. Whole-bone fracture susceptibility was influenced by individual genomic factors that were reflected in size, shape, and possibly bone metabolic regulation. The results indicate that the G610C OI (Amish) knock-in mouse is a novel translational model to identify modifying genes that influence phenotype and for testing potential therapies for OI. © 2010 American Society for Bone and Mineral ResearchPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65040/1/90720_ftp.pd

    Current and emerging treatments for the management of osteogenesis imperfecta

    Get PDF
    Osteogenesis imperfecta (OI) is the most common bone genetic disorder and it ischaracterized by bone brittleness and various degrees of growth disorder. Clinical severityvaries widely; nowadays eight types are distinguished and two new forms have been recentlydescribed although not yet classified. The approach to such a variable and heterogeneousdisease should be global and therefore multidisciplinary. For simplicity, the objectives oftreatment can be reduced to three typical situations: the lethal perinatal form (type II), inwhich the problem is survival at birth; the severe and moderate forms (types III–IX), in whichthe objective is ‘autonomy’; and the mild form (type I), in which the aim is to reach ‘normallife’. Three types of treatment are available: non-surgical management (physical therapy,rehabilitation, bracing and splinting), surgical management (intramedullary rod positioning,spinal and basilar impression surgery) and medical-pharmacological management (drugs toincrease the strength of bone and decrease the number of fractures as bisphosphonates or growthhormone, depending on the type of OI). Suggestions and guidelines for a therapeutic approachare indicated and updated with the most recent findings in OI diagnosis and treatment

    A diastrophic dysplasia sulfate transporter (SLC26A2) mutant mouse: morphological and biochemical characterization of the resulting chondrodysplasia phenotype.

    Get PDF
    Mutations in the diastrophic dysplasia sulfate transporter (DTDST or SLC26A2) cause a family of recessively inherited chondrodysplasias including, in order of decreasing severity, achondrogenesis 1B, atelosteogenesis 2, diastrophic dysplasia (DTD) and recessive multiple epiphyseal dysplasia. The gene encodes a widely distributed sulfate/chloride antiporter of the cell membrane whose function is crucial for the uptake of inorganic sulfate, which is needed for proteoglycan sulfation. To provide new insights in the pathogenetic mechanisms leading to skeletal and connective tissue dysplasia and to obtain an in vivo model for therapeutic approaches to DTD, we generated a Dtdst knock-in mouse with a partial loss of function of the sulfate transporter. In addition, the intronic neomycine cassette in the mutant allele contributed to the hypomorphic phenotype by inducing abnormal splicing. Homozygous mutant mice were characterized by growth retardation, skeletal dysplasia and joint contractures, thereby recapitulating essential aspects of the DTD phenotype in man. The skeletal phenotype included reduced toluidine blue staining of cartilage, chondrocytes of irregular size, delay in the formation of the secondary ossification center and osteoporosis of long bones. Impaired sulfate uptake was demonstrated in chondrocytes, osteoblasts and fibroblasts. In spite of the generalized nature of the sulfate uptake defect, significant proteoglycan undersulfation was detected only in cartilage. Chondrocyte proliferation and apoptosis studies suggested that reduced proliferation and/or lack of terminal chondrocyte differentiation might contribute to reduced bone growth. The similarity with human DTD makes this mouse strain a useful model to explore pathogenetic and therapeutic aspects of DTDST-related disorders

    N-acetylcysteine treatment ameliorates the skeletal phenotype of a mouse model of diastrophic dysplasia.

    Get PDF
    Diastrophic dysplasia (DTD) is a recessive chondrodysplasia caused by mutations in SLC26A2, a cell membrane sulfate-chloride antiporter. Sulfate uptake impairment results in low cytosolic sulfate, leading to cartilage proteoglycan (PG) undersulfation. In this work, we used the dtd mouse model to study the role of N-acetyl-l-cysteine (NAC), a well-known drug with antioxidant properties, as an intracellular sulfate source for macromolecular sulfation. Because of the important pre-natal phase of skeletal development and growth, we administered 30 g/l NAC in the drinking water to pregnant mice to explore a possible transplacental effect on the fetuses. When cartilage PG sulfation was evaluated by high-performance liquid chromatography disaccharide analysis in dtd newborn mice, a marked increase in PG sulfation was observed in newborns from NAC-treated pregnancies when compared with the placebo group. Morphometric studies of the femur, tibia and ilium after skeletal staining with alcian blue and alizarin red indicated a partial rescue of abnormal bone morphology in dtd newborns from treated females, compared with pups from untreated females. The beneficial effect of increased macromolecular sulfation was confirmed by chondrocyte proliferation studies in cryosections of the tibial epiphysis by proliferating cell nuclear antigen immunohistochemistry: the percentage of proliferating cells, significantly reduced in the placebo group, reached normal values in dtd newborns from NAC-treated females. In conclusion, NAC is a useful source of sulfate for macromolecular sulfation in vivo when extracellular sulfate supply is reduced, confirming the potential of therapeutic approaches with thiol compounds to improve skeletal deformity and short stature in human DTD and related disorders

    Cellular stress due to impairment of collagen prolyl hydroxylation complex is rescued by the chaperone 4-phenylbutyrate

    Get PDF
    Osteogenesis imperfecta (OI) types VII, VIII and IX, caused by recessive mutations in cartilage associated protein (CRTAP), prolyl-3-hydroxylase 1 (P3H1), and cyclophilin B (CyPB), respectively, are characterized by the synthesis of overmodified collagen. The genes encode for the components of the endoplasmic reticulum (ER) complex responsible for the 3-hydroxylation of specific proline residues in collagen type I. Our study dissects the effects of mutations in the proteins of the complex on cellular homeostasis, using primary fibroblasts from seven recessive OI patients. In all cell lines the intracellular retention of overmodified type I collagen molecules causes ER enlargement associated to the presence of protein aggregates, activation of the PERK branch of the unfolded protein response and apoptotic death. The administration of 4-phenylbutyrate (4-PBA) alleviates cellular stress by restoring ER cisternae size, normalizing the p-PERK/PERK ratio and the expression of apoptotic marker. The drug has also a stimulatory effect on autophagy. We proved that the rescue of cellular homeostasis following 4-PBA treatment is associated to its chaperone activity, since it increases protein secretion, restoring ER proteostasis and reducing PERK activation and cell survival also in presence of autophagy pharmacological inhibition.Our results provide a novel insight into the mechanism of 4-PBA action and demonstrated that the intracellular stress in recessive OI can be tuned by 4-PBA therapy, similarly to what we recently reported for dominant OI, thus allowing a common target for OI forms characterized by overmodified collagen

    Rapid prenatal diagnosis using targeted exome sequencing: a cohort study to assess feasibility and potential impact on prenatal counseling and pregnancy management.

    Get PDF
    Purpose Unexpected fetal abnormalities occur in 2-5% of pregnancies. While traditional cytogenetic and microarray approaches achieve diagnosis in around 40% of cases, lack of diagnosis in others impedes parental counseling, informed decision making, and pregnancy management. Postnatally exome sequencing yields high diagnostic rates, but relies on careful phenotyping to interpret genotype results. Here we used a multidisciplinary approach to explore the utility of rapid fetal exome sequencing for prenatal diagnosis using skeletal dysplasias as an exemplar. Methods Parents in pregnancies undergoing invasive testing because of sonographic fetal abnormalities, where multidisciplinary review considered skeletal dysplasia a likely etiology, were consented for exome trio sequencing (both parents and fetus). Variant interpretation focused on a virtual panel of 240 genes known to cause skeletal dysplasias. Results Definitive molecular diagnosis was made in 13/16 (81%) cases. In some cases, fetal ultrasound findings alone were of sufficient severity for parents to opt for termination. In others, molecular diagnosis informed accurate prediction of outcome, improved parental counseling, and enabled parents to terminate or continue the pregnancy with certainty. Conclusion Trio sequencing with expert multidisciplinary review for case selection and data interpretation yields timely, high diagnostic rates in fetuses presenting with unexpected skeletal abnormalities. This improves parental counseling and pregnancy management.Genetics in Medicine advance online publication, 29 March 2018; doi:10.1038/gim.2018.30
    corecore