501 research outputs found

    Experimental and numerical analysis of the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles

    Get PDF
    In this work, an experimental and numerical analysis of the martensitic transformation in AISI 304 steel sheets subjected to perforation by conical and hemispherical projectiles is conducted. Experiments are performed using a pneumatic gas gun for with the impact velocities in the range of 35 m/s < V-0 < 200 m/s. Two target thicknesses are examined, t(1) = 0.5 mm and t(2) = 1.0 mm. The experimental setup enabled the determination of the impact velocity, the residual velocity and the failure mode of the steel sheets. The effect of the projectile nose shape on the target's capacity for energy absorption is evaluated. Moreover, martensite is detected in all the impacted samples, and the role played by the projectile nose shape on the transformation is highlighted. A three-dimensional model is developed in ABAQUS/Explicit to simulate the perforation tests. The material is defined via the constitutive model developed by Zaera et al. (2012) to describe the strain-induced martensitic transformation occurring in metastable austenitic steels at high strain rates. The finite element results are compared with the experimental evidence, and satisfactory matching is observed over the entire range of impact velocities tested and for both projectile configurations and target thicknesses considered. The numerical model succeeds in describing the perforation mechanisms associated with each projectile-target configuration analyzed. The roles played by impact velocity, target thickness and projectile nose shape on the martensitic transformation are properly captured.The researchers of the University Carlos III of Madrid are in debted to the Comunidad Autónoma de Madrid (Project CCG10 UC3M/DPI 5596) and to the Ministerio de Ciencia e Innovación de España (DPI2011 24068) for the financial support received which allowed conducting part of this work

    On the Taylor-Quinney coefficient in dynamically phase transforming materials. Application to 304 stainless steel

    Get PDF
    We present a thermodynamic scheme to capture the variability of the Taylor-Quinney coefficient in austenitic steels showing strain induced martensitic transformation at high strain rates. For that task, the constitutive description due to Zaera et al. (2012) has been extended to account for the heat sources involved in the temperature increase of the material. These are the latent heat released due to the exothermic character of the transformation and the heat dissipated due to austenite and martensite straining. Through a differential treatment of these dissipative terms, the Taylor-Quinney coefficient develops a direct connection with the martensitic transformation becoming stress, strain and strain rate dependent. The improved constitutive description sheds light on experimental results available in the literature reporting unusual (> 1) values for the Taylor-Quinney coefficient.The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG10-UC3M/DPI-5596)) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2011-24068) for the financial support received which allowed conducting part of this work. D. Rittel acknowledges the support of Carlos III University with a Cátedra de Excelencia funded by Banco Santander during academic year 2011–2012.Publicad

    Numerical modelling of orthogonal cutting: Influence of cutting conditions and separation criterion

    Get PDF
    6 pages, 5 figures.-- Issue title: "EURODYMAT 2006 - 8th International Conference on Mehanical and Physical Behaviour of Materials under Dynamic Loading" (Dijon, France, Sep 11-15, 2006).Chip formation is a high strain rate process studied with analytical and numerical models. Analytical models have the advantage of a small calculation time, however, they are often based on some assumptions which are difficult to verify. Finite element modelling (FEM) of chip formation process provides more details on the chip process formation, such as plastic strain, strain rate or stress fields. FEM can be used to improve the analytical models' assumptions. There is still a wide dispersion of formulations and numerical parameters adopted in order to obtain accurate results in numerical models. In the Lagrangian approach, it is of crucial importance to establish realistic criteria for element deletion, allowing chip separation from original workpiece. In the arbitrary Lagrangian Eulerian (ALE) formulation no element deletion is needed. This work is focused in modelization of orthogonal cutting. A comparison between both numerical approaches, Lagrangian and ALE is shown. The effects of geometrical parameters, erosion criterion and cutting speed are evaluated. Comparisons between numerical and theoretical results are performed, and the results obtained from the numerical approach are used as an input of analytical model, improving its accuracy."Program of Creation and Consolidation of Research Teams" University Carlos III of Madrid (2005).Publicad

    On the complete extinction of selected imperfection wavelengths in dynamically expanded ductile rings

    Get PDF
    In this work the inception and development of multiple necks in dynamically expanded ductile rings with ab initio geometric imperfections has been addressed. Finite element simulations and linear perturbation analysis have been applied for that task. In the numerical calculations a selected wavelength is included into the model defining along the circumference of the ring an array of periodic geometric imperfections of predefined amplitude. In the stability analysis a perturbation of a given mode is added to the background solution and the growth rate of the perturbation is evaluated. The attention has been focused on the extinction of both long and short wavelength imperfections and the appearance of a dominant necking pattern which emerges when the geometric imperfections are vanished. The role played by the loading rate on the extinction of imperfections is also addressed. Moreover, the necking strain is found to be dependent on the imperfection pattern and the loading rate. Its maximum value is registered for the loading cases in which the initial imperfections distribution is completely extinguished.The authors are indebted to the Ministerio de Ciencia e Innovación de España (Projects DPI/2011 24068 and DPI/ 2011 23191) for the financial support

    Finite element analysis of AISI 304 steel sheets subjected to dynamic tension: The effects of martensitic transformation and plastic strain development on flow localization

    Get PDF
    The paper presents a finite element study of the dynamic necking formation and energy absorption in AISI 304 steel sheets. The analysis emphasizes the effects of strain induced martensitic transformation (SIMT) and plastic strain development on flow localization and sample ductility. The material behavior is described by a constitutive model proposed by the authors which includes the SIMT at high strain rates. The process of martensitic transformation is alternatively switched on and off in the simulations in order to highlight its effect on the necking inception. Two different initial conditions have been applied: specimen at rest which is representative of a regular dynamic tensile test, and specimen with a prescribed initial velocity field in the gauge which minimizes longitudinal plastic wave propagation in the tensile specimen. Plastic waves are found to be responsible for a shift in the neck location, may also mask the actual constitutive performance of the material, hiding the expected increase in ductility and energy absorption linked to the improved strain hardening effect of martensitic transformation. On the contrary, initializing the velocity field leads to a symmetric necking pattern of the kind described in theoretical works, which reveals the actual material behavior. Finally the analysis shows that in absence of plastic waves, and under high loading rates, the SIMT may not further increase the material ductility.D. Rittel acknowledges the support of Carlos III University with a Cátedra de Excelencia funded by Banco Santander during academic year 2011-2012. The researchers of the University Carlos III of Madrid are indebted to the Comunidad Autónoma de Madrid (Project CCG10 UC3M/DPI 5596) and to the Ministerio de Ciencia e Innovación de España (Project DPI/2008 06408) for the financial support received which allowed conducting part of this work

    Residual stresses in orthogonal cutting of metals: the effect of thermo-mechanical coupling parameters and of friction

    Get PDF
    21 pages, 13 figures.The generation of residual stresses in orthogonal machining is analysed by using an Arbitrary Lagrangian Eulerian (ALE) finite element approach. It is shown that a substantial level of tensile residual stresses can be obtained in the vicinity of the machined surface without any contribution of thermal effects. This motivates the development of a parametric study to analyse the effects of the thermomechanical coupling parameters on residual stresses. The roles of thermal expansion, of thermal softening and of the Taylor-Quinney coefficient (controlling the heat generated by plastic flow) are considered separately. The influence of friction is also analysed by assuming dry cutting conditions and a Coulomb friction law. The friction coefficient has a complex effect by controlling heat generation (frictional heating) along the tool rake and clearance faces and the propensity for the chip to stick to the tool. Geometrical effects such as the tool rake angle and the tool edge radius are also discussed.The authors are indebted, for the financial support of this work, to the Ministry of Science and Education of Spain (under project DPI2005-08018) and to the Comunidad Autónoma de Madrid and University Carlos III of Madrid (under project CCG07-UC3M/DPI-3396).Publicad

    Dynamic necking of notched tensile bars: an experimental study

    Get PDF
    The mechanics of necking inception in dynamically-stretched notched specimens have been investigated. For that task, a systematic experimental campaign of quasi-static and dynamic tensile tests on martensitic steel specimens has been conducted. Samples with and without notches have been considered. Unlike the quasi-static tests, the dynamically-tested notched samples revealed that, under certain loading conditions, flow localization may develop away from the groove. The experimental results presented in this investigation show that the presence of sharp geometrical imperfections in ductile materials subjected to dynamic loading does not necessarily dictate the necking and fracture locus.D. Rittel acknowledges the support of Carlos III University with a Cátedra de Excelencia funded by Banco Santander during academic year 2011-2012. The researchers of the University Carlos III of Madrid are indebted to the Ministerio de Ciencia e Innovación de España (Projects DPI/2011-24068 and DPI/2011-23191) for the financial suppor

    Heterologous expression screens in Nicotiana benthamiana identify a candidate effector of the wheat Yellow Rust Pathogen that associates with processing bodies

    Get PDF
    Rust fungal pathogens of wheat (Triticum spp.) affect crop yields worldwide. The molecular mechanisms underlying the virulence of these pathogens remain elusive, due to the limited availability of suitable molecular genetic research tools. Notably, the inability to perform high-throughput analyses of candidate virulence proteins (also known as effectors) impairs progress. We previously established a pipeline for the fast-forward screens of rust fungal candidate effectors in the model plant Nicotiana benthamiana. This pipeline involves selecting candidate effectors in silico and performing cell biology and protein-protein interaction assays in planta to gain insight into the putative functions of candidate effectors. In this study, we used this pipeline to identify and characterize sixteen candidate effectors from the wheat yellow rust fungal pathogen Puccinia striiformis f sp tritici. Nine candidate effectors targeted a specific plant subcellular compartment or protein complex, providing valuable information on their putative functions in plant cells. One candidate effector, PST02549, accumulated in processing bodies (P-bodies), protein complexes involved in mRNA decapping, degradation, and storage. PST02549 also associates with the P-body-resident ENHANCER OF mRNA DECAPPING PROTEIN 4 (EDC4) from N. benthamiana and wheat. We propose that P-bodies are a novel plant cell compartment targeted by pathogen effectors

    Experimental and numerical study on the perforation process of mild steel sheets subjected to perpendicular impact by hemispherical projectiles

    Get PDF
    23 pages, 28 figures."This paper is dedicated to our friend, Professor Janusz Roman Klepaczko who passed away on August 15, 2008, for his pioneer contribution in the area of dynamic behavior of materials".In this paper a study is presented on the experimental and numerical analysis of the failure process of mild steel sheets subjected to normal impact by hemispherical projectiles. The experiments have been performed using a direct impact technique based on Hopkinson tube as a force measurement device. The tests covered a wide range of impact velocities. Both lubricated and dry conditions between specimen and projectile have been applied. Different failure modes for each case were found. For lubricated conditions a petalling was observed, whereas for dry conditions a radial neck along with a hole enlargement reduces the formation of petalling. The perforation process has been simulated by the application of 3D analysis using ABAQUS/Explicit FE code. The material behavior of the circular specimen was approximated by three different constitutive relations. The main task was to study the influence of the material definition on the response of the sheet specimen with special attention to the failure mode.The researchers of the University Carlos III of Madrid are indebted to the Spanish Ministry of Education (project DPI2005-06769), and to the Region of Madrid (project CCG06-UC3M/DPI-0796) for the financial support that allowed to perform a part of the numerical simulations. The researchers from the Metz University (Laboratory of Physics and Mechanics of Materials) acknowledgement some support by CNRS – France.Publicad

    The MicroRNA and MessengerRNA Profile of the RNA-Induced Silencing Complex in Human Primary Astrocyte and Astrocytoma Cells

    Get PDF
    GW/P bodies are cytoplasmic ribonucleoprotein-rich foci involved in microRNA (miRNA)-mediated messenger RNA (mRNA) silencing and degradation. The mRNA regulatory functions within GW/P bodies are mediated by GW182 and its binding partner hAgo2 that bind miRNA in the RNA-induced silencing complex (RISC). To date there are no published reports of the profile of miRNA and mRNA targeted to the RISC or a comparison of the RISC-specific miRNA/mRNA profile differences in malignant and non-malignant cells.RISC mRNA and miRNA components were profiled by microarray analysis of malignant human U-87 astrocytoma cells and its non-malignant counterpart, primary human astrocytes. Total cell RNA as well as RNA from immunoprecipitated RISC was analyzed. The novel findings were fourfold: (1) miRNAs were highly enriched in astrocyte RISC compared to U-87 astrocytoma RISC, (2) astrocytoma and primary astrocyte cells each contained unique RISC miRNA profiles as compared to their respective cellular miRNA profiles, (3) miR-195, 10b, 29b, 19b, 34a and 455-3p levels were increased and the miR-181b level was decreased in U-87 astrocytoma RISC as compared to astrocyte RISC, and (4) the RISC contained decreased levels of mRNAs in primary astrocyte and U-87 astrocytoma cells.The observation that miR-34a and miR-195 levels were increased in the RISC of U-87 astrocytoma cells suggests an oncogenic role for these miRNAs. Differential regulation of mRNAs by specific miRNAs is evidenced by the observation that three miR34a-targeted mRNAs and two miR-195-targeted mRNAs were downregulated while one miR-195-targeted mRNA was upregulated. Biological pathway analysis of RISC mRNA components suggests that the RISC plays a pivotal role in malignancy and other conditions. This study points to the importance of the RISC and ultimately GW/P body composition and function in miRNA and mRNA deregulation in astrocytoma cells and possibly in other malignancies
    corecore