539 research outputs found

    Overused and Neglected: Conceptual Designs for Spaces on Campus

    Get PDF
    As humans, we routinely spend time in the spaces we perceive to be comfortable and serve a purpose centralized to the individual. Most do not recognize the science behind what goes into making a space serve its purpose and that is done best by interior designers. Over time, it is common for the needs of a space to change in accordance with the changing times and current trends. The University of Rhode Island has recently made grand investments in the programs that attract the most students, leaving many other spaces overused and neglected. There has been continuous neglect to certain spaces on campus that are frequently used by students. Not only do these selected spaces call for some slight renovations, but also call for changes that will allow for optimal functionality and increase appeal to students. The selected spaces for this project include: the Airport Lounge in the Memorial Union, the Fine Arts Cafe Study Area in the Fine Arts building, and the Honors Lounge in Lippitt Hall. This project embodies the self-exploration into the interior design world that is not present at the University, but applies the skills learned to improve the University’s appearance. With the application of self-taught skill of computer aided design softwares, I learned drafting skills using AutoCAD and how to create 3-D realistic renderings using Revit

    It\u27s Pronounced Zine

    Get PDF
    https://digitalcommons.chapman.edu/feminist_zines/1036/thumbnail.jp

    COVID-19: ¿Cómo disminuir el riesgo de contagio en un evento multitudinario?

    Get PDF
    Ir de copas por la noche, asistir a una fiesta nocturna o a un concierto de nuestro grupo favorito junto con unos colegas es algo que no ha sido posible en los últimos meses. No solo muchas personas lo echan en falta. También es un medio de vida y trabajo. Hay quienes, incluso, consideran que forma parte de un derecho que no han podido ejercer

    Simulation of the CTF drive beam line and comparison with the experiment

    Get PDF
    The tracking of particles in accelerating structures is presented for cases where the effects of the wake-fields are high. This is particularly the case when the structures are used with high current and relatively low energy as in the drive beam of the Compact Linear Collider Test Facility (CTF 2) with its 3 GHz accelerator and its 30 GHz decelerator. High initial energy spread and transverse wake-fields may impair the beam stability and generate particle loss. The CTF modelling is made with the code PARMELA for the 3 GHz part of the beam line, which includes 3 GHz accelerating sections and a magnetic bunch compressor. For the part containing the 30 GHz power-extracting structures, simulations are done with WAKE, a new algorithm dealing with the effects of the wake-field modes 0 and 1, as well as of the group velocity. Beam transmission through the overall beam line is studied, and results are compared with measurements made on the CTF beam

    The Effects of Cannabidiol Supplementation on Measures of Performance and Fatigue Following Eccentric Exercise

    Get PDF
    Following intense exercise, there is a period of time where performance is decreased. This period of reduced performance is characterized by several factors including myofibrillar disruption, reduced range-of-motion, inflammation, and an influx of enzymes and proteins. Cannabidiol (CBD) has been marketed as a recovery supplement capable of reducing markers of fatigue and inflammation following exercise, yet this claim has not been investigated. PURPOSE: The purpose of this study was to determine if CBD supplementation limits fatigue and expedites a return to performance following intense eccentric exercise. METHODS: A double-blind, crossover design with repeated measures was used. Twenty-four NCAA female athletes (age = 21.2 ± 1.8 yrs., height = 166.4 ± 8 cm, weight = 64.9 ± 9.1 kg) were randomized to either receive 5 mg/kg of CBD in pill form (Cannabidiol Life, Longwood, FL) or a matched weight placebo. Treatments were consumed two hours prior to, immediately following, and ten hours following muscle damage sessions. All participants consumed both treatments, with each separated by approximately 28 days to control for the menstrual cycle. To induce muscle damage, participants completed 10 sets of 10 repetitions of unilateral eccentric leg extension at 60°/sec on an isokinetic dynamometer (Biodex Medical Systems Inc., Shirley, NY). Concentrations of a blood marker indicative of muscle damage (myoglobin), in addition to measures of fatigue (visual analogue fatigue scale [VAFS]) and performance (vertical jump, peak dynamic knee extensor torque at 60, 180, and 300°/sec, and peak isometric knee extensor torque), were collected before and 4, 24, and 48 hours following muscle damaging sessions. A repeated measures MANOVA was conducted to analyze the performance measures, and separate repeated measures ANOVAs were conducted to analyze myoglobin concentrations and results from the VAFS with a significance level of 0.05. RESULTS: A significant increase (p = 0.002) in myoglobin levels was observed for both treatments 4 hours following the muscle damaging session but no significant differences (p \u3e 0.05) were observed between the CBD and placebo groups at any of the 4 measured time points. Peak torque at 60°/sec (p = 0.001) and peak isometric torque (p = 0.02) were significantly lower 24 hours following muscle damage, but none of the 5 measured performance variables were significantly different (p \u3e 0.05 for all) between the CBD and placebo treatment at any time point. Subjective fatigue as measured by the VAFS was not significantly different (p \u3e 0.05) between the CBD and placebo treatments at any measured time point. CONCLUSION: Cannabidiol supplementation was unable to reduce fatigue and restore performance when compared to a placebo in well-trained female participants. It does not appear that CBD supplementation is of beneficial use as a recovery supplement following intense exercise in athletes

    Stable, Ductile and Strong Ultrafine HT-9 Steels via Large Strain Machining

    Get PDF
    Beyond the current commercial materials, refining the grain size is among the proposed strategies to manufacture resilient materials for industrial applications demanding high resistance to severe environments. Here, large strain machining (LSM) was used to manufacture nanostructured HT-9 steel with enhanced thermal stability, mechanical properties, and ductility. Nanocrystalline HT-9 steels with different aspect rations are achieved. In-situ transmission electron microscopy annealing experiments demonstrated that the nanocrystalline grains have excellent thermal stability up to 700 & DEG;C with no additional elemental segregation on the grain boundaries other than the initial carbides, attributing the thermal stability of the LSM materials to the low dislocation densities and strains in the final microstructure. Nano-indentation and micro-tensile testing performed on the LSM material pre- and post-annealing demonstrated the possibility of tuning the material's strength and ductility. The results expound on the possibility of manufacturing controlled nanocrystalline materials via a scalable and cost-effective method, albeit with additional fundamental understanding of the resultant morphology dependence on the LSM conditions

    Nanomechanical testing of silica nanospheres for levitated optomechanics experiments

    Full text link
    Optically-levitated dielectric particles can serve as ultra-sensitive detectors of feeble forces and torques, as tools for use in quantum information science, and as a testbed for quantum coherence in macroscopic systems. Knowledge of the structural and optical properties of the particles is important for calibrating the sensitivity of such experiments. Here we report the results of nanomechanical testing of silica nanospheres and investigate an annealing approach which can produce closer to bulk-like behavior in the samples in terms of their elastic moduli. These results, combined with our experimental investigations of optical trap lifetimes in high vacuum at high trapping-laser intensity for both annealed and as-grown nanospheres, were used to provide a theoretical analysis of the effects of porosity and non-sphericity in the samples, identifying possible mechanisms of trapping instabilities for nanospheres with non-bulk-silica-like properties.Comment: 10 pages, 7 figure

    The Impact of Laser Control on The Porosity And Microstructure of Selective Laser Melted Nickel Superalloy 718

    Get PDF
    Additively manufacturing high performance metals by laser processing represents an exciting opportunity to exploit localized properties by varying input parameters throughout the process. This work explores the solidification and microstructural properties of selectively laser melted (SLM) Inconel 718 (IN718) using unique processing parameters. By employing traditional pulsed laser physics techniques, samples were manufactured with a continuous wave laser to study a potential ubiquitous approach. While the overall power density was controlled, the power, speed, and hatch spacing were varied. The porosity and grain sizes of the samples were characterized by optical and scanning electron microscopes. The influence of processing parameters showed physical differences in the final samples. Sample degradation was observed in higher power processes with porosity up 10%, likely due to increased temperatures and more intense thermal gradients
    • …
    corecore