741 research outputs found
Exact and Approximate Determinization of Discounted-Sum Automata
A discounted-sum automaton (NDA) is a nondeterministic finite automaton with
edge weights, valuing a run by the discounted sum of visited edge weights. More
precisely, the weight in the i-th position of the run is divided by
, where the discount factor is a fixed rational number
greater than 1. The value of a word is the minimal value of the automaton runs
on it. Discounted summation is a common and useful measuring scheme, especially
for infinite sequences, reflecting the assumption that earlier weights are more
important than later weights. Unfortunately, determinization of NDAs, which is
often essential in formal verification, is, in general, not possible. We
provide positive news, showing that every NDA with an integral discount factor
is determinizable. We complete the picture by proving that the integers
characterize exactly the discount factors that guarantee determinizability: for
every nonintegral rational discount factor , there is a
nondeterminizable -NDA. We also prove that the class of NDAs with
integral discount factors enjoys closure under the algebraic operations min,
max, addition, and subtraction, which is not the case for general NDAs nor for
deterministic NDAs. For general NDAs, we look into approximate determinization,
which is always possible as the influence of a word's suffix decays. We show
that the naive approach, of unfolding the automaton computations up to a
sufficient level, is doubly exponential in the discount factor. We provide an
alternative construction for approximate determinization, which is singly
exponential in the discount factor, in the precision, and in the number of
states. We also prove matching lower bounds, showing that the exponential
dependency on each of these three parameters cannot be avoided. All our results
hold equally for automata over finite words and for automata over infinite
words
Approximate Determinization of Quantitative Automata
Quantitative automata are nondeterministic finite automata with edge weights. They value a run by some function from the sequence of visited weights to the reals, and value a word by its minimal/maximal run. They generalize boolean automata, and have gained much attention in recent years. Unfortunately, important automaton classes, such as sum, discounted-sum, and limit-average automata, cannot be determinized. Yet, the quantitative setting provides the potential of approximate determinization. We define approximate determinization with respect to a distance function, and investigate this potential.
We show that sum automata cannot be determinized approximately with respect to any distance function. However, restricting to nonnegative weights allows for approximate determinization with respect to some distance functions.
Discounted-sum automata allow for approximate determinization, as the influence of a word\u27s suffix is decaying. However, the naive approach, of unfolding the automaton computations up to a sufficient level, is shown to be doubly exponential in the discount factor. We provide an alternative construction that is singly exponential in the discount factor, in the precision, and in the number of states. We prove matching lower bounds, showing exponential dependency on each of these three parameters.
Average and limit-average automata are shown to prohibit approximate determinization with respect to any distance function, and this is the case even for two weights, 0 and 1
LIPIcs
A discounted-sum automaton (NDA) is a nondeterministic finite automaton with edge weights, which values a run by the discounted sum of visited edge weights. More precisely, the weight in the i-th position of the run is divided by lambda^i, where the discount factor lambda is a fixed rational number greater than 1. Discounted summation is a common and useful measuring scheme, especially for infinite sequences, which reflects the assumption that earlier weights are more important than later weights. Determinizing automata is often essential, for example, in formal verification, where there are polynomial algorithms for comparing two deterministic NDAs, while the equivalence problem for NDAs is not known to be decidable. Unfortunately, however, discounted-sum automata are, in general, not determinizable: it is currently known that for every rational discount factor 1 < lambda < 2, there is an NDA with lambda (denoted lambda-NDA) that cannot be determinized. We provide positive news, showing that every NDA with an integral factor is determinizable. We also complete the picture by proving that the integers characterize exactly the discount factors that guarantee determinizability: we show that for every non-integral rational factor lambda, there is a nondeterminizable lambda-NDA. Finally, we prove that the class of NDAs with integral discount factors enjoys closure under the algebraic operations min, max, addition, and subtraction, which is not the case for general NDAs nor for deterministic NDAs. This shows that for integral discount factors, the class of NDAs forms an attractive specification formalism in quantitative formal verification. All our results hold equally for automata over finite words and for automata over infinite words
Making the Constable Culpable: A Proposal to Improve the Exclusionary Rule
Responding to the shortcomings of the exclusionary rule, the authors propose the creation of an agency to impose sanctions on police who violate the fourth amendment, and they argue that an administrative remedy would be an effective substitute for the existing rule
Safety and Liveness of Quantitative Automata
The safety-liveness dichotomy is a fundamental concept in formal languages which plays a key role in verification. Recently, this dichotomy has been lifted to quantitative properties, which are arbitrary functions from infinite words to partially-ordered domains. We look into harnessing the dichotomy for the specific classes of quantitative properties expressed by quantitative automata. These automata contain finitely many states and rational-valued transition weights, and their common value functions Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum map infinite words into the totally-ordered domain of real numbers. In this automata-theoretic setting, we establish a connection between quantitative safety and topological continuity and provide an alternative characterization of quantitative safety and liveness in terms of their boolean counterparts. For all common value functions, we show how the safety closure of a quantitative automaton can be constructed in PTime, and we provide PSpace-complete checks of whether a given quantitative automaton is safe or live, with the exception of LimInfAvg and LimSupAvg automata, for which the safety check is in ExpSpace. Moreover, for deterministic Sup, LimInf, and LimSup automata, we give PTime decompositions into safe and live automata. These decompositions enable the separation of techniques for safety and liveness verification for quantitative specifications
IST Austria Technical Report
The target discounted-sum problem is the following: Given a rational discount factor 0 < λ < 1 and three rational values a, b, and t, does there exist a finite or an infinite sequence w ε(a, b)∗ or w ε(a, b)w, such that Σ|w| i=0 w(i)λi equals t? The problem turns out to relate to many fields of mathematics and computer science, and its decidability question is surprisingly hard to solve. We solve the finite version of the problem, and show the hardness of the infinite version, linking it to various areas and open problems in mathematics and computer science: β-expansions, discounted-sum automata, piecewise affine maps, and generalizations of the Cantor set. We provide some partial results to the infinite version, among which are solutions to its restriction to eventually-periodic sequences and to the cases that λ λ 1/2 or λ = 1/n, for every n ε N. We use our results for solving some open problems on discounted-sum automata, among which are the exact-value problem for nondeterministic automata over finite words and the universality and inclusion problems for functional automata
The target discounted-sum problem
The target discounted-sum problem is the following: Given a rational discount factor 0 < λ < 1 and three rational values a, b, and t, does there exist a finite or an infinite sequence w ε(a, b)∗ or w ε(a, b)w, such that Σ|w| i=0 w(i)λi equals t? The problem turns out to relate to many fields of mathematics and computer science, and its decidability question is surprisingly hard to solve. We solve the finite version of the problem, and show the hardness of the infinite version, linking it to various areas and open problems in mathematics and computer science: β-expansions, discounted-sum automata, piecewise affine maps, and generalizations of the Cantor set. We provide some partial results to the infinite version, among which are solutions to its restriction to eventually-periodic sequences and to the cases that λ λ 1/2 or λ = 1/n, for every n ε N. We use our results for solving some open problems on discounted-sum automata, among which are the exact-value problem for nondeterministic automata over finite words and the universality and inclusion problems for functional automata
Imaging and Nulling with the Space Interferometry Mission
We present numerical simulations for a possible synthesis imaging mode of the
Space Interferometer Mission (SIM). We summarize the general techniques that
SIM offers to perform imaging of high surface brightness sources, and discuss
their strengths and weaknesses. We describe an interactive software package
that is used to provide realistic, photometrically correct estimates of SIM
performance for various classes of astronomical objects. In particular, we
simulate the cases of gaseous disks around black holes in the nuclei of
galaxies, and zodiacal dust disks around young stellar objects. Regarding the
first, we show that a Keplerian velocity gradient of the line-emitting gaseous
disk -- and thus the mass of the putative black hole -- can be determined with
SIM to unprecedented accuracy in about 5 hours of integration time for objects
with H_alpha surface brigthness comparable to the prototype M 87. Detections
and observations of exo-zodiacal dust disks depend critically on the disk
properties and the nulling capabilities of SIM. Systems with similar disk size
and at least one tenth of the dust content of beta Pic can be detected by SIM
at distances between 100 pc and a few kpc, if a nulling efficiency of 1/10000
is achieved. Possible inner clear regions indicative of the presence of massive
planets can also be detected and imaged. On the other hand, exo-zodiacal disks
with properties more similar to the solar system will not be found in
reasonable integration times with SIM.Comment: 28 pages, incl. 8 postscript figures, excl. 10 gif-figures Submitted
to Ap
IST Austria Technical Report
There is recently a significant effort to add quantitative objectives to formal verification and synthesis. We introduce and investigate the extension of temporal logics with quantitative atomic assertions, aiming for a general and flexible framework for quantitative-oriented specifications. In the heart of quantitative objectives lies the accumulation of values along a computation. It is either the accumulated summation, as with the energy objectives, or the accumulated average, as with the mean-payoff objectives. We investigate the extension of temporal logics with the prefix-accumulation assertions Sum(v) ≥ c and Avg(v) ≥ c, where v is a numeric variable of the system, c is a constant rational number, and Sum(v) and Avg(v) denote the accumulated sum and average of the values of v from the beginning of the computation up to the current point of time. We also allow the path-accumulation assertions LimInfAvg(v) ≥ c and LimSupAvg(v) ≥ c, referring to the average value along an entire computation. We study the border of decidability for extensions of various temporal logics. In particular, we show that extending the fragment of CTL that has only the EX, EF, AX, and AG temporal modalities by prefix-accumulation assertions and extending LTL with path-accumulation assertions, result in temporal logics whose model-checking problem is decidable. The extended logics allow to significantly extend the currently known energy and mean-payoff objectives. Moreover, the prefix-accumulation assertions may be refined with “controlled-accumulation”, allowing, for example, to specify constraints on the average waiting time between a request and a grant. On the negative side, we show that the fragment we point to is, in a sense, the maximal logic whose extension with prefix-accumulation assertions permits a decidable model-checking procedure. Extending a temporal logic that has the EG or EU modalities, and in particular CTL and LTL, makes the problem undecidable
Temporal specifications with accumulative values
Recently, there has been an effort to add quantitative objectives to formal verification and synthesis. We introduce and investigate the extension of temporal logics with quantitative atomic assertions. At the heart of quantitative objectives lies the accumulation of values along a computation. It is often the accumulated sum, as with energy objectives, or the accumulated average, as with mean-payoff objectives. We investigate the extension of temporal logics with the prefix-accumulation assertions Sum(v) ≥ c and Avg(v) ≥ c, where v is a numeric (or Boolean) variable of the system, c is a constant rational number, and Sum(v) and Avg(v) denote the accumulated sum and average of the values of v from the beginning of the computation up to the current point in time. We also allow the path-accumulation assertions LimInfAvg(v) ≥ c and LimSupAvg(v) ≥ c, referring to the average value along an entire infinite computation. We study the border of decidability for such quantitative extensions of various temporal logics. In particular, we show that extending the fragment of CTL that has only the EX, EF, AX, and AG temporal modalities with both prefix-accumulation assertions, or extending LTL with both path-accumulation assertions, results in temporal logics whose model-checking problem is decidable. Moreover, the prefix-accumulation assertions may be generalized with "controlled accumulation," allowing, for example, to specify constraints on the average waiting time between a request and a grant. On the negative side, we show that this branching-time logic is, in a sense, the maximal logic with one or both of the prefix-accumulation assertions that permits a decidable model-checking procedure. Extending a temporal logic that has the EG or EU modalities, such as CTL or LTL, makes the problem undecidable
- …