
A

Temporal Specifications with Accumulative Values

UDI BOKER, The Interdisciplinary Center, Herzliya, Israel

KRISHNENDU CHATTERJEE, IST Austria, Klosterneuburg, Austria

THOMAS A. HENZINGER, IST Austria, Klosterneuburg, Austria

ORNA KUPFERMAN, The Hebrew University, Jerusalem, Israel

Recently there has been an effort to add quantitative objectives to formal verification and synthesis. We
introduce and investigate the extension of temporal logics with quantitative atomic assertions.

At the heart of quantitative objectives lies the accumulation of values along a computation. It is often the
accumulated sum, as with energy objectives, or the accumulated average, as with mean-payoff objectives.
We investigate the extension of temporal logics with the prefix-accumulation assertions Sum(v) ≥ c and
Avg(v) ≥ c, where v is a numeric (or Boolean) variable of the system, c is a constant rational number, and
Sum(v) and Avg(v) denote the accumulated sum and average of the values of v from the beginning of the
computation up to the current point in time. We also allow the path-accumulation assertions LimInfAvg(v) ≥
c and LimSupAvg(v) ≥ c, referring to the average value along an entire infinite computation.

We study the border of decidability for such quantitative extensions of various temporal logics. In particu-
lar, we show that extending the fragment of CTL that has only the EX, EF, AX, and AG temporal modalities
with both prefix-accumulation assertions, or extending LTL with both path-accumulation assertions, result
in temporal logics whose model-checking problem is decidable. Moreover, the prefix-accumulation assertions
may be generalized with “controlled accumulation,” allowing, for example, to specify constraints on the av-
erage waiting time between a request and a grant. On the negative side, we show that this branching-time
logic is, in a sense, the maximal logic with one or both of the prefix-accumulation assertions that permits
a decidable model-checking procedure. Extending a temporal logic that has the EG or EU modalities, such
as CTL or LTL, makes the problem undecidable.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Computation—
Automata; F.1.2 [Computation by Abstract Devices]: Models of Computation—Alternation and nonde-

terminism; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—Temporal logic;
F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages

General Terms: Verification, Theory, Algorithms

Additional Key Words and Phrases: Formal verification, Model checking, Nondeterminism, Temporal Logic,
Specification, Accumulation.

1. INTRODUCTION

Traditionally, formal verification has focused on Boolean properties of systems, such
as “every request is eventually granted”. Temporal logics such as LTL and CTL, as
well as automata over infinite objects, have been studied as specification formalisms
to express such Boolean properties.

The research was supported in part by the Austrian Science Fund (FWF) Grant No P 23499-N23; FWF NFN
Grants S11402-N23 and S11407-N23 (RiSE: Rigorous Systems Engineering); ERC Starting grant 279307
(Graph Games); ERC Starting grant 278410 (QUALITY); ERC Advanced Grant 267989 (QUAREM: Quanti-
tative Reactive Modeling); and Microsoft faculty fellows award.
The present article extends [Boker et al. 2011].
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 1529-3785/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268225324?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A:2 U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman

In the last years we experience a growing need to extend specification formalisms
with quantitative aspects that can express properties such as “the average success-
rate is eventually above half”, “the total energy of a system is always positive”, or “the
long-run average of the costs is below 5”. Such quantitative aspects of specifications
are essential for systems that work in a resource-constrained environment (as an em-
bedded system).1

There has recently been a significant effort to study such quantitative-oriented spec-
ifications. The approach that has been mostly followed is to consider specific objectives,
as mean-payoff or energy-level, by means of weighted automata [Chatterjee et al. 2008;
Droste et al. 2009; Alur et al. 2009; Bloem et al. 2009]. No attention, however, has
been put in extending temporal logics to provide a general framework for quantitative-
oriented specifications. In this work, we introduce and investigate this direction.

When considering quantitative-objectives, one should distinguish between two dif-
ferent aspects. The first is extending the verified system to have numeric variables
rather than Boolean ones. The second is extending the specification language to han-
dle accumulative values of variables along a computation.

To understand the difference between the two issues, consider, for example, a Kripke
structure with a numeric variable “consumption” that gets a rational value rather than
a Boolean one. This alone is of no real interest, as numeric variables over a bounded
domain can be encoded by Boolean variables. Hence, one can easily express properties
like “the consumption in each state is at most 10” with standard temporal logic.

The main challenge in the quantitative setting is the second issue, namely the accu-
mulation of values. Here, one may wish to specify, for example, that the total consump-
tion, from the beginning of the computation up to the current point in time, is always
positive. Note that accumulation is interesting also for systems with only Boolean vari-
ables. For example, if the Boolean variable “active” holds exactly when a communica-
tion channel is active, one may wish to specify that the activity rate, namely the rate of
states in which active is valid, is always above half. It is not hard to see that properties
that involve accumulation cannot be specified using standard temporal logics. Indeed,
accumulation yields languages that are not ω-regular.

The basic accumulation operators are summation and average. One may formalize
them by adding to temporal logics atomic assertions of the form γ ≥ γ′, where γ and
γ′ are arithmetic expressions that use atoms like Sum(v), Avg(v), and c, where v is
a numeric variable of the system, c is a constant rational number, and Sum(v) and
Avg(v) denote the accumulated sum and average of the values of v from the beginning
of the computation up to the current point in time. Example to basic atomic assertions
are Sum(v) ≥ c and Avg(v) ≥ c, and one can also have expressions like Sum(v) ≥
2 · Sum(u) + 5. A natural question that arises is which temporal logics, if at all, can
be extended, and with which type of arithmetic expressions, while still allowing for a
decidable model-checking problem.

On the positive side, we show that the EF logic (also known as UB−) [Manna and
Pnueli 1979], which is the fragment of CTL with the EF, AG, EX, and AX temporal op-
erators, can be extended with a rich class of arithmetic expressions (we would formally
define it below), retaining decidability. We denote the extended logic by EFΣ. A simple
example of an EFΣ specification is given below.

1Different classes of formalisms with quantitative aspects are real-time logic and automata [Alur and Hen-
zinger 1994], as well as logics that support probabilistic reasoning [Courcoubetis et al. 1991]. The contribu-
tions made in these areas are orthogonal to the quantitative aspects that are the subject of this work. Yet,
discrete real-time logics that count the number of steps turn out to be special cases of this work, as counting
steps can be done by controlled-accumulation. (For details, see Section 3.3.)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Temporal Specifications with Accumulative Values A:3

Reliable system with energy constraint. Consider a system with a Boolean variable p
that is true when the system produces a correct output, and is false when the output
is erroneous. The system is reliable if in every computation, the average of correct
outputs is always at least 0.95. The system also has a numeric variable v that denotes
the energy level, and it must not reach a negative value. The required properties can
be specified in EFΣ by: AG(Avg(p) ≥ 0.95 ∧ Sum(v) ≥ 0).

Moreover, we show that EFΣ can include a rich family of arithmetic expressions:
in the atomic assertions γ ≥ γ′, both sides can be linear combinations over Sum(v),
Avg(v), and c, as long as there is no comparison between summation and average. For
example, we can have Sum(u) − Sum(v) > 3 ∧ Avg(u) ≥ 2 · Avg(v), but the syntax does
not allow for Sum(v) ≥ Avg(u). Moreover, the atomic assertions can have controlled
accumulation, allowing to control when and how the accumulation is done by means
of regular expressions. This enables, for example, to specify constraints on the aver-
age waiting time between a request and a grant, by accumulating the time-ticks of
definable transactions.

The decidability of the logic EFΣ has been a nice surprise for us. Due to the value
accumulation, the logic EFΣ has “memoryful semantics”: When we unwind the Kripke
structure to an infinite tree, the accumulation of values depends on the path taken
from the beginning of the computation (the root of the tree) and the current state. Ac-
cordingly, different occurrences of the same state may not agree on the set of atomic as-
sertions they satisfy, and hence may also disagree on the satisfaction of formulas. Stan-
dard temporal logics have a memoryless semantics, and model-checking algorithms for
them heavily depend on this fact. Handling of memoryful logics is much more challeng-
ing. For the non-accumulative setting, model checking of memoryful logics is possible
thanks to the fact that different histories can be partitioned into finitely many regular
languages [Kupferman and Vardi 2006]. In our accumulative setting, there is no bound
on the accumulative values and no finite partition is possible.

For that reason, the model-checking procedure is very different from standard
model-checking procedures of Kripke structures, and is based on a reduction to the
validity problem of a Presburger Arithmetic (PA) sentence. That is, given an EFΣ for-
mula ϕ and a Kripke structure K with numeric values, we generate a PA sentence θ,
such that K satisfies ϕ if and only if θ is true. Note that reductions to PA formulas
are indeed common for solving various problems with counter machines and infinite
state systems [Cherniavsky 1976; Gurari and Ibarra 1979; Bultan et al. 1997; Seidl
et al. 2004], whereas solving common problems with energy and limit-average graphs
and games can be achieved in polynomial time [Chatterjee and Doyen 2012; Chatterjee
et al. 2010] and in the most general case in PSPACE [Velner 2012].

On the negative side, we show that EFΣ is, in a sense, the maximal extendable logic.
Extending a temporal logic that has either of the temporal operators EG, EU, ER or
EW results in a logic whose model-checking problem is undecidable. In particular, CTL
and LTL cannot be extended. The undecidability result applies already to an extension
with the atomic assertion Sum(v) ≥ 0 or Avg(v) ≥ 0, and holds even when restricting
attention to systems with only Boolean variables. The proof proceeds by a reduction
from the halting problem of counter machines. An open problem is whether a logic
with the, less standard, operators EFG and EGF (standing for “exists a computation
such that eventually-always and always-eventually”) can be extended, while retaining
decidability. Another open question is whether restricting attention to a single numeric
variable allows for decidable model checking.

The logic EFΣ considers prefix accumulation, accumulating a value from the begin-
ning of the computation up to the current point of time. It significantly enriches the
currently known energy-objectives and opens new directions for specifications with av-
erage values and timed-transactions. For path-accumulation assertions, in which the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman

accumulation is done along the entire, infinite, computation, referring to the sum-
mation is usually useless, as it need not converge. Researchers thus consider dis-
counted accumulation [de Alfaro et al. 2005], or refer to the limit-average of the ac-
cumulated values. We therefore also study the extension of temporal logics with the
path-accumulation assertions LimInfAvg(v) ≥ c and LimSupAvg(v) ≥ c, for a numeric
variable v and a constant number c, referring to the (infimum/supremum of the) long-
run average of v along an entire computation. We do not know of other extensions of
LTL that capture limit-average (mean-payoff) objectives.

As additional good news we show that LTL can be extended with the path-
accumulation assertions LimInfAvg(v) ≥ c and LimSupAvg(v) ≥ c, denoted LTLlimΣ,
while allowing for a decidable model checking. This is indeed a nice surprise, as a
small fragment of LTL extended with the prefix-accumulation assertion Avg(v) ≥ c is
undecidable. The extended logic LTLlimΣ significantly enriches the currently known
mean-payoff objectives. An example for a specification in LTLlimΣ is given below.

Long run happiness. Consider a system with Boolean variables Wish and ComesTrue,
and numeric variables Income and Pleasure. A system is said to be happy if every wish
eventually comes true or the long run average of both the income and the pleasure are
positive. The required properties can be specified by the LTLlimΣ formula: G(Wish →
F (ComesTrue)) ∨ LimInfAvg(Income) > 0 ∧ LimInfAvg(Pleasure) > 0.

Related work. Weighted automata over semirings (i.e., finite automata in which
transitions are associated with weights taken from a semiring) have been used to de-
fine cost functions, called formal power series for finite words [Schützenberger 1961;
Kuich and Salomaa 1986] and ω-series for infinite words [Culik II and Karhumäki
1994; Droste and Kuske 2003; Ésik and Kuich 2004]. In [Chatterjee et al. 2008], new
classes of cost functions were studied using operations over rational numbers that
do not form a semiring. In [Alur et al. 2009], deterministic weighted automata with
mean-payoff objectives were further studied, providing closure under Boolean opera-
tions. Several other works have considered quantitative generalizations of languages,
over finite words [Droste and Gastin 2007], over trees [Droste et al. 2008], or using
finite lattices [Gurfinkel and Chechik 2003; Kupferman and Lustig 2007]. The work
of [Droste and Meinecke 2010] gives an extension of MSO to capture weighted mean-
payoff automata. All these works consider weighted automata and their expressive
power for quantitative specification languages. The extension of temporal logic with
accumulation assertions to express quantitative properties of systems has not been
considered before.

There are many works on model checking infinite-state systems and simple pro-
gramming languages [Gurari 1985; Bultan et al. 1997], yet none of which is equivalent
to the problem of model checking a quantitative Kripke structure. Checking prefix-
accumulation assertions on a quantitative Kripke structure resembles problems on
counter machines and is closely related to model checking Petri-nets (which are equiv-
alent to vector addition systems). However, while model checking is undecidable for
Petri-nets with respect to all relevant temporal logics [Esparza 1996], it turns out to
be decidable for quantitative Kripke structures with respect to the logic EFΣ. As the
halting problem is already undecidable for counter machines [Minsky 1967], various
restricted models were considered in the literature [Demri and Sangnier 2010; Göller
et al. 2012]. These models are often restricted to a single counter or are limited in the
number of times that a counter can alternate between positive and negative additives.
They differ from quantitative Kripke structures, which do not allow for 0-checks, but do
allow for non-determinism as well as for an arbitrary number of unrestricted numeric
variables. In addition, our specification language for model checking a quantitative
Kripke structure has assertions on the values of the numeric variables, as opposed

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Temporal Specifications with Accumulative Values A:5

to specifications on counter-machines and pushdown automata that commonly only
concern atomic propositions.

The model of turn-based games with mean-payoff and energy objectives have been
deeply studied in the literature [Zwick and Paterson 1996; Bjorklund et al. 2004;
Chakrabarti et al. 2003; Chatterjee et al. 2010]. These works focus on the extension
of energy and mean-payoff objectives from the Kripke structure models to game mod-
els. Our work, on the other hand, keep the model as a (quantitative) Kripke structure,
while extending the objective by means of temporal logic.

2. THE SETTINGS

In this section we define quantitative Kripke structures – our model for systems with
numeric variables, and introduce temporal logics that can specify quantitative aspects
of quantitative Kripke structures. Assertions that relate to the current value of a nu-
meric variable, as v > 7, are of no interest as they can be expressed in standard,
Boolean, temporal logic, by referring to the binary representation of v. We are inter-
ested, instead, in assertions like Sum(v) > 7, which refer to the accumulated value of v
from the beginning of the computation up to the current time position. Such assertions
are no longer ω-regular.

Quantitative Kripke structure. In a Boolean Kripke structure, the variables (atomic
propositions) are assigned a Boolean value. Quantitative Kripke structures have both
Boolean and numeric variables, where the latter are assigned rational numbers. For-
mally, a quantitative Kripke Structure is a tuple K = 〈P, V, S, sin, R, L〉, with a finite
set of Boolean variables P , a finite set of numeric variables V , a finite set of states S,
an initial state sin ∈ S, a total transition relation R ⊆ S × S and a labeling function
L : S → 2P ×QV .

A computation of K is an infinite sequence of states π = π0, π1, . . . such that π0 = sin
and 〈πi, πi+1〉 ∈ R for every i ≥ 0. We denote by inf(π) the set of states that π visits
infinitely often, that is inf(π) = {s ∈ S | for infinitely many i ∈ N, we have that πi =
s}.

A quantitative Kripke structure may also have a fairness condition α, added as the
last element in its definition tuple. A Büchi (unconditional) fairness condition is a set
α ⊆ S, and a computation π is fair if inf(π) ∩ α 6= ∅.

We denote the labeling (value) of a Boolean variable p and of a numeric variable v
in a state s by [[p]]s ∈ {T, F} and [[v]]s ∈ Q, respectively. We often talk about Kripke
structures, meaning quantitative ones.

Extended temporal logics. We consider two kinds of assertions on accumulative val-
ues, for which the accumulation is done either along a prefix of a computation or on
the entire, infinite, computation. Let V be a set of numeric variables.

— A prefix-accumulation assertion over V is of the form γ ≥ γ′, where γ and γ′ are
linear arithmetic expressions defined over the atoms c ∈ Q, and Sum(v) or Avg(v)
for v ∈ V . For example, Sum(v) ≥ 4, Avg(v) ≥ 2 1

2 , and Sum(v) ≥ 2 · Sum(u) + 5. A
single atomic assertion is not allowed to have both Sum() and Avg() (while different
atomic-assertions in the same formula is fine).

— A path-accumulation assertion over V is of the form LimInfAvg(v) ≥ c or
LimSupAvg(v) ≥ c, for v ∈ V and c ∈ Q.

Note that prefix-accumulation assertions allow to compare between two different
variables, while path-accumulation assertions do not.

We shall investigate the extension of both linear-time and branching-time logics
with prefix-accumulation assertions, and the extension of LTL with path-accumulation
assertions. For example, the logic CTL extended with prefix-accumulation assertions

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman

is denoted CTLΣ and has the following syntax. Let P and V be finite sets of Boolean
variables (atomic propositions) and numeric variables, respectively.

— A CTLΣ formula is p ∈ P , a prefix-accumulation assertion over V , ¬ϕ, ϕ1 ∧
ϕ2, EXϕ, EFϕ, EGϕ, or ϕ1EUϕ2, for CTLΣ formulas ϕ, ϕ1, and ϕ2.

Of special interest would be the fragment of CTL with the EF and EX temporal
operators, in addition to the ¬ and ∧ Boolean operators, known in the literature as
the EF or UB− logic [Manna and Pnueli 1979]. We shall denote its extension with
prefix-accumulation assertions by EFΣ.

The logic LTL extended with path-accumulation assertions is denoted LTLlimΣ, and
has the following syntax, again with respect to sets P and V .

— An LTLlimΣ formula is p ∈ P , a path-accumulation assertion over V , ¬ϕ, ϕ1 ∧
ϕ2, Xϕ, Fϕ, Gϕ or ϕ1Uϕ2, for LTLlimΣ formulas ϕ, ϕ1 and ϕ2.

The semantics of the extended logics is defined with respect to the computation tree
of a quantitative Kripke structure. Note that, due to the value accumulation, the ex-
tended logics have “memoryful semantics”, as opposed to the memoryless semantics
of standard CTL and LTL. This is why we define the semantics with respect to the
computation tree and not directly with respect to the Kripke structure. We thus start
with the definition of trees and computation trees.

Given a finite set D of directions, a D-tree is a set T ⊆ D∗ such that if x ·d ∈ T , where
x ∈ D∗ and d ∈ D, then also x ∈ T . The elements of T are called nodes, and the empty
word ε is the root of T . The prefix relation induces a partial order ≤ between nodes of
T . Thus, for two nodes x and y, we say that x ≤ y iff there is some z ∈ D∗ such that
y = x · z. For every x ∈ T , the nodes x · d, for d ∈ D, are the successors of x. A node is
a leaf if it has no successors. A path of T is a minimal set π ⊆ T such that ε ∈ π and
for every y ∈ π, either y is a leaf or there exists a unique d ∈ D such that y · d ∈ π. A
path starting in a node x is a path of the subtree of T whose root is x. For a set Z, a
Z-labeled D-tree is a pair 〈T, τ〉 where T is a D-tree and τ : T → Z maps each node of
T to an element in Z.

A Kripke structure K induces a computation tree 〈TK, τK〉 that corresponds to the
computations of K. (See an example in Fig. 1.) Formally, for a Kripke structure K =
〈P, V, S, sin, R, L〉, we have that 〈TK, τK〉 is a (2P × QV)-labeled S-tree, where state(x)
denotes the last state in a node x of TK and τK(x) = L(state(x)).

As has been the case with states in K, we denote the labeling (value) of a Boolean
variable p and of a numeric variable v in a node x by [[p]]x ∈ {T, F} and [[v]]x ∈ Q,
respectively.

For the path quantifiers and the temporal operators, the semantics is as in standard
temporal logic. Thus, E stands for “exists a computation”, A for “all computations”, X
for “next”, F for “eventually”, G for “always”, U for “until”, R for “release”, and W for
“weak until”. For example, in CTLΣ, [[EϕUψ]]x = T in a node x of the computation tree,
iff there exists a path π = x1, x2, . . ., with x1 = x, and an index i ≥ 1 such that [[ψ]]xi

= T

and for every 1 ≤ j < i, we have [[ϕ]]xj
= T.

We define the prefix-accumulation values of a numeric variable v at a node x of the
computation tree as follows.

[[Sum(v)]]x =
∑

y≤x

[[v]]y

[[Avg(v)]]x =
[[Sum(v)]]x
|x|+ 1

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Temporal Specifications with Accumulative Values A:7

T

s3

¬p

v = 1

p

v = −5
Sum(v) = −2
Avg(v) = −1

p

v = 3
Sum(v) = 1
Avg(v) = 1

3

s1

p

v = 3
Sum(v) = 3
Avg(v) = 3

s3

¬p

v = 1
Sum(v) = 4
Avg(v) = 2

s3

K

s1

p

s2

p

v = −5

v = 3

s2

s1 s2

Fig. 1. A quantitative Kripke structure K and its computation-tree T .

The Sum and Avg functions can also be defined for a Boolean variable, by viewing it
as a numeric variable with F = 0 and T = 1.

The limit-average value along an infinite computation path is intuitively the limit
of the average values of its prefixes. However, these average values need not converge,
thus a standard solution is to consider their infimum and supremum. We define the
path-accumulation values of a numeric variable v along a path π = x1, x2, . . . of the
computation tree as follows.

— [[LimInfAvg(v)]]π = lim
n→∞

inf{[[Avg(v)]]xi
| i ≥ n}

— [[LimSupAvg(v)]]π = lim
n→∞

sup{[[Avg(v)]]xi
| i ≥ n}

For example, for the computation π = (s1s2)
ω of the Kripke structure in Fig. 1

we have that [[LimInfAvg(v)]]π is the limit of inf{ 3
1 ,

−2
2 ,

1
3 ,

−4
4 ,

−1
5 ,

−6
6 ,

−3
7 ,

−8
8 , . . .} = −1,

which is also [[LimSupAvg(v)]]π . Note that the values of path-accumulation assertions
are indifferent to finite prefixes of π. Thus, for all suffixes π′ of π, we have that
[[LimInfAvg(v)]]π = [[LimInfAvg(v)]]π′ , and similarly for LimSupAvg. Accordingly, allowing
path-accumulation assertions within the scope of temporal operators does not add to
the expressive power of LTLlimΣ. Yet, we do allow it for convenience; one may prefer
to use, for example, the formula (p ∨ LimInfAvg(v) ≥ c)U(q ∨ LimSupAvg(u) ≥ c), rather
than the equivalent formula (LimSupAvg(u) ≥ c) ∨ ((LimInfAvg(v) ≥ c) ∧ F (q)) ∨ pUq.

3. TEMPORAL LOGICS WITH PREFIX ACCUMULATION

In this section we consider temporal logics extended by prefix-accumulation assertions.
The central question is which of the standard temporal logics, if at all, can be extended
while still allowing for a decidable model checking.

One may notice that prefix accumulation takes us from the “comfort zone” of finite
state systems into the “hazardous” zone of infinite state systems. Indeed, it is closely
related to counter machines and makes our paradigm especially close to model check-
ing Petri-nets. Yet, while model checking is undecidable for Petri-nets and all relevant

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman

temporal logics [Esparza 1996], we show that it is decidable for quantitative Kripke
structures and specifications in the logic EFΣ. It also turns out that, in a sense, the
logic EF is the maximal one that can be extended with prefix accumulation.

In Section 3.1, we show the decidability of the model-checking problem for the logic
EFΣ. In Section 3.3, we further extend EFΣ with assertions on controlled accumula-
tion, while retaining the above decidability. These assertions allow, for example, to
specify constraints on the average waiting time between a request and a grant. On
the other hand, we show in Section 3.4 that adding prefix-accumulation assertions to
a temporal logic with any of the other standard temporal operators (that is, EG, EU,
ER, or EW) makes the model-checking problem undecidable. In particular, extending
CTL and LTL makes them undecidable.

The Sum and Avg accumulations are inherently different, as the latter should “re-
member” the number of steps made, in addition to the total sum. Yet, one may ob-
serve that in our setting all the prefix-accumulation assertions can be expressed by
the Sum(v) ≥ c assertion 2:

LEMMA 3.1. Consider a Kripke structure K and a specificationϕ in a temporal logic
with prefix-accumulation assertions. It is possible to obtain from K and ϕ a structure
K′ and a specification ϕ′ such that K′ differs from K only in new numeric variables,
ϕ′ differs from ϕ only in some of the prefix-accumulation assertions, all the prefix-
accumulation assertions in ϕ′ are of the form Sum(v) ≥ c, and K |= ϕ iff K′ |= ϕ′.

PROOF. Let u and v be numeric variables and c a rational constant. We obtain K′

and ϕ′ as follows.

— For an expression Sum(v) ± Sum(u), we add a new variable v′ to K′ that is assigned
the value [[v′]]s = ([[v]]s ± [[u]]s) in each state s of the Kripke structure. We then replace
Sum(v)± Sum(u) by Sum(v′). An analogous treatment is given to Avg(v)± Avg(u).

— We replace an Avg(v) ≥ Avg(u) assertion by Sum(v) ≥ Sum(u).
— For a Sum(v) ≥ Sum(u) assertion, we add a new variable v′ to K′ that is assigned the

value [[v′]]s = ([[v]]s − [[u]]s) in each state s of the Kripke structure. We then replace
Sum(v) ≥ Sum(u) by Sum(v′) ≥ 0.

— For an Avg(v) ≥ c assertion, we add a new variable v′ to K′ that is assigned the value
[[v′]]s = ([[v]]s − c) in each state s of the Kripke structure. We then replace Avg(v) ≥ c
by Sum(v′) ≥ 0.

It is easy to see that, in all nodes of the computation-tree, the original assertions are
valid iff the new ones are. Moreover, since the computation-trees of K and K′ are identi-
cal, up to the new variables, the assertion-equivalence extends to formula-equivalence
in all temporal logics.

Note that the above translation between Avg and Sum assertions introduces new
numeric variables. Hence, if one considers restricted specifications that only allow for
a single numeric variable, Avg and Sum assertions are not mutually reducible.

3.1. Decidability

We show the decidability of the model-checking problem for the logic EFΣ. Given a
Kripke structure and a specification, we shall formulate their model-checking problem
by a Presburger arithmetic (PA) sentence, such that the sentence is true iff the Kripke
structure satisfies the specification. A part of the formulation goes along known tech-
niques, used for defining graph properties by PA formulas, such as a connected path
and a Parikh image [Parikh 1966; Ginsburg and Spanier 1966; Seidl et al. 2004].

2The Sum ≥ c assertion can be switched to an Avg ≥ 0 assertion, by setting an initial value of c to v.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Temporal Specifications with Accumulative Values A:9

Presburger Arithmetic. In 1929, Mojżesz Presburger formalized the first order theory
of the natural numbers with addition, and showed that it is consistent, complete and
decidable [Presburger 1929].

A PA formula is a first order formula with the constants 0 and 1 and the binary
function +. The PA theory has the following axioms:

— ∀x. ¬(0 = x+ 1)
— ∀x. (x+ 1 = y + 1) → x = y
— ∀x. x+ 0 = x
— ∀x, y. (x+ y) + 1 = x+ (y + 1)

In addition, the PA theory has the induction scheme: for every PA formula θ(x), we
have that if θ(0) ∧ ∀x(θ(x) → θ(x + 1)), then ∀y.θ(y).

The syntax of PA formulas can be extended to contain inequality notions (≤,≥, <,>)
and rational coefficients. For example, having the statement ∃x∀y 3

4x − 2y < 1
2 . The

latter can be translated to the sentence ∃x∀y∃z ¬(z = 0)∧ 3x+ z = 8y+2, maintaining
the original truth value.

The PA formulation, in a glance. For convenience, we shall view the Kripke structure
K as having the numeric values on the edges (transitions), rather than in the states.
The edges are named e1, e2, . . . , en, and the value of a variable v on an edge ei is denoted
vi.

We use the PA variables x1, x2, . . . , xn in correlation with the edges e1, e2, . . . , en.
Intuitively, a finite path π of K induces an assignment to the PA variables, describ-
ing the number of times that each edge is repeated in π. Using these variables, we
can translate, for example, the EFΣ formula EF (Sum(v) ≥ 3) to the PA formula
∃x1, x2, . . . , xn.

∑n

i=1 vixi ≥ 3, where vi is the value of the variable v on the edge ei.
This follows the approach used in formulating a Parikh image of an automaton [Parikh
1966; Seidl et al. 2004], where only the number of edge occurrences is counted, with-
out summing up variables, and the approach of [Kosaraju and Sullivan 1988], where
linear programming is used rather than Presburger arithmetic.

Note, however, that a valid assignment of the PA variables does not guarantee a
valid computation of the Kripke structure – the edge repetition need not match a con-
nected path. Nevertheless, path connectivity between two states can be defined by a
PA formula of length linear in the size of the graph [Seidl et al. 2004].

For handling nested quantifications, there would be a new set of PA variables for
every temporal quantifier, while the PA variables of the upper levels are added to the
summation. For example, EF (Sum(v) ≥ 3 ∧ ¬EF (Sum(u) = 0)) would be translated to
the PA formula ∃x1, x2, . . . , xn.

∑n

i=1 vixi ≥ 3 ∧ ¬(∃y1, y2, . . . , yn.
∑n

i=1 ui(xi + yi) = 0).
The complete PA formula is built by a top-down translation of the EFΣ formula, such

that the starting state in an inner EF formula is taken to be the ending state of the
the upper-level formula.

In the rest of this section, we formalize this PA formulation and prove its correctness.

Moving the numeric values to the edges. It is a common practice to switch between
the values of the states and the edges, for example in the process of translating a
Kripke structure to an automaton. For convenience, we move the numeric variables to
the edges, while keeping the Boolean variables in the states.

The translation (see Fig. 2) adds a new state, s0, as the new initial state, and a
transition from s0 to the original initial state. Every numeric variable v in a state s is
moved to all the incoming edges of s. The edges are named e1, e2, . . . , en, and the value
of a variable v on an edge ei is denoted vi.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman

v3 = 1

¬p

v = 1

s2

u = −1

v4 = −2
u4 = 1

s1

p

v = −2
u = 1

K

¬p

s2
e3

u3 = −1

s0

e1

Shift(K)

v1 = −2

u1 = 1

s1

p
e2

e4

v2 = 1
u2 = −1

Fig. 2. The Kripke structure K and its equivalent structure Shift(K), having the numeric values on the
edges.

Given a Kripke structure K and a specification ϕ, we translate K to Shift(K) as above,
and change the specification ϕ to Shift(ϕ), referring to the next state. In the case of a
linear-time specification, we define Shift(ϕ) as Xϕ and with a branching-time speci-
fication, we define Shift(ϕ) to be AXϕ or EXϕ (since s0 has a single successor, path
quantification is not important).

PROPOSITION 3.2. Consider a Kripke structure K and a temporal logic specification
ϕ. Then K |= ϕ iff Shift(K) |= Shift(ϕ).

PA formulation of a connected path. We use known results on defining a connected
path by a PA formula [Parikh 1966; Ginsburg and Spanier 1966; Cherniavsky 1976;
Gurari and Ibarra 1979; Bultan et al. 1997; Seidl et al. 2004]. The following result
is proved in [Seidl et al. 2004], in the course of showing that the Parikh image of a
regular language is PA definable.

LEMMA 3.3. [Seidl et al. 2004] Consider a Kripke structure K with
states {s1, . . . , sm} and edges {e1, e2, . . . , en}. Then there is a PA formula
Path(i, j, x1, x2, . . . , xn) of length linear in n, such that Path is true for an assign-
ment i, j, x1, x2, . . . , xn iff there is a path p from the state si to the state sj and
x1, x2, . . . , xn correspond to the number of times that each edge ei is repeated in the
path p.

Translating temporal logic into Presburger arithmetic. We can now describe the for-
mulation of the model-checking problem for a Kripke structure K with states S and an
EFΣ formula ϕ by means of a PA formula. We do so by defining a recursive procedure,
Trans(ξ, i, Y), that gets as input an EFΣ formula ξ, a state number i, and a finite set
Y of n-tuples of PA variables, and returns a PA formula that is valid iff the state si
of Shift(K) satisfies ξ under the assumption that si has been reached along a path de-
scribed by Y (we formalize this below). Accordingly, model checking of ϕ in K is reduced
to checking the validity of Trans(Shift(ϕ), 0, ∅), where s0 is the initial state of K.

Consider a set Y of n-tuples of PA variables, say Y = {〈x11, . . . , x
1
n〉, . . . , 〈x

k
1 , . . . , x

k
n〉}.

We write
∑

Yi as a shortcut for
∑k

j=1 x
j
i . In the procedure, we use Path for the formula

described in Lemma 3.3. All the PA quantifications use new PA variables.
The formula Trans(ξ, s, Y) is defined according to the structure of ξ as follows.

— Trans(¬ξ, s, Y) = ¬Trans(ξ, s, Y).
— Trans(ξ1 ∧ ξ2, s, Y) = Trans(ξ1, s, Y) ∧ Trans(ξ2, s, Y).
— Trans(p, s, Y) = [[p]]s, for an atomic proposition p.
— Trans(EFξ, s, Y) = ∃t, x1, . . . , xn. Path(s, t, x1, . . . , xn) ∧ Trans(ξ, t, Y ∪ {〈x1, . . . , xn〉}).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Temporal Specifications with Accumulative Values A:11

—Trans(EXξ, s, Y) = Trans(EFξ, s, Y) ∧
∑n

i=1 xi = 1. 3

—Trans(Sum(v) ≥ c, s, Y) =
∑n

i=1(vi
∑

Yi) ≥ c, where vi is the value of the Kripke-
variable v on the edge ei.

We shall now use Trans for the decidability of the model-checking problem.

THEOREM 3.4. Given a quantitative Kripke structure K and a specification ϕ in
EFΣ, it is decidable to check whether K satisfies ϕ.

PROOF. We prove that the PA formula Trans(Shift(ϕ), 0, ∅) is valid iff Shift(K) |=
Shift(ϕ). By Proposition 3.2, the latter holds iff K |= ϕ. The proof proceeds by induction
on the nesting level of temporal operators in ϕ.

The base of the induction is a formula with a single temporal operator. In this case,
the translation correctness follows from Lemma 3.3 and the equivalence between the
interpretations of Sum in EFΣ and

∑

in PA.
As for the induction step, it directly corresponds to the recursive step in the PA-

formulation procedure: setting the starting state of the inner subformula to be the
ending state of the upper level ensures a correct path, and the addition of the PA
variables of the upper level to the summation in the inner level ensures a proper cal-
culation of the accumulated variable values.

Note that model checking an EFΣ formula is also decidable with respect to a quan-
titative Kripke structure with a fairness condition. The reason is that a fairness con-
dition only depends on computation suffixes, while an EF formula only depends on
computation prefixes. Indeed, consider a Kripke structure K with states S and a fair-
ness condition α. Let D ⊆ S be the “dead-end states” of K, from which no computation
of K satisfies α. Consider the Kripke structure K′ that is identical to the restriction of
K to S \D, and has no fairness condition. Then, for an EFΣ formula of the form EFξ
(or EXξ), one can see that K has a fair computation that satisfies EFξ iff K′ has a
computation that satisfies EFξ.

3.2. Complexity

The decidability proof presented in Section 3.1 reduces the problem of model check-
ing an EFΣ formula to the validity problem of a Presburger arithmetic formula. In
this section, we study the complexity of the model-checking problem in detail, showing
that the two problems are equivalent, complexity wise. We therefore have a triply-
exponential deterministic upper bound [Oppen 1978; Reddy and Loveland 1978], and
a doubly-exponential nondeterministic lower bound [Fischer and Rabin 1974]. More-
over, the lower bound of [Fischer and Rabin 1974] shows hardness in 2NEXPTIME,
thus, by the wide belief that non-deterministic algorithms can be exponentially faster
than deterministic ones, the triply-exponential upper bound cannot be significantly
improved.

Upper bound. The upper bound follows from the construction of Theorem 3.4 to-
gether with the algorithm of [Reddy and Loveland 1978] for checking the validity of a
PA formula. Formally, we have the following.

THEOREM 3.5. Model checking a Kripke structure with n edges and an EFΣ formula
of length l and nesting level d of EF operators, can be done in a deterministic time

complexity of 22
O(n×l)O(d)

.

3The EX case may also be handed by a straightforward disjunction on the outgoing edges of s.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman

PROOF. Given a Kripke structure with n edges and an EFΣ formula of length l and
nesting level d of EF operators, the algorithm of Theorem 3.4 constructs a PA formula
of length in O(n × l) with quantifier nesting level d. By [Reddy and Loveland 1978],

there is a 22
O(a)O(b)

upper bound for checking the validity of a PA formula of length a

with nesting level b. Hence, we end up with a 22
O(n×l)O(d)

upper bound.

Lower bound. We now proceed to the lower bound. We show a polynomial reduction
from the validity problem of a PA formula. That is, given a PA formula η, we construct
in polynomial time an EFΣ formula ϕ and a Kripke structure K, such that ϕ is valid iff
K satisfies ϕ.

Intuitively, ϕ is the same as η, except for replacing the logic existential quantifier ∃
with the temporal existential quantifier EF. The Kripke structure K is constructed in
a way that follows the nesting hierarchy of the quantifiers in η: For every PA variable
xi, there is a state qi in K with a self loop, and a numeric variable vi, whose value is 1
in qi and 0 elsewhere. Instantiating η with a specific value m to xi is then equivalent
to taking a computation tree of K that loops m times in qi. A state qi has a transition to
a state qj iff the PA variable xj is in the scope of the PA variable xi. For ensuring that
a computation tree that satisfies ϕ indeed has the requested value of vi at the proper
levels of the quantifications, all transitions from a state qi go through a state q′i, having
a Boolean variable bi, to which ϕ refers in the EF quantifier.

The reduction is formally defined below and is illustrated in Fig. 3. It is done in
three steps:

— Given a PA formula η, we first translate it to a normal form, such that i) the variables
get unique names, x1, x2, . . . , xk, and ii) every atomic proposition (which is originally

in the form of t = s, for PA terms s and t), gets the form
∑k

i=1 aixi = c, where ai and
c are integers. For simplicity, we refer to the normal-formed formula as η, as well.

— The Kripke structure K is constructed as follows. For every variable xi of η, K has
the states qi and q′i, as well as the numeric variable vi and the Boolean variable bi.
The value of vi is 1 in qi and 0 everywhere else, and the value of bi is T in q′i and F

everywhere else. For every 1 ≤ i ≤ k, there is a transition from qi to itself and to q′i.
If a variable xi is in the topmost level (not in the scope of any other variable) then
qi and q′i are directly connected from the initial state of K. If a variable xj is in the
immediate scope of a variable xi (meaning that it is in the scope of xi and there is no
variable xh, for h 6∈ {i, j}, such that xj is in the scope of xh and xh is in the scope of
xi) then there is a transition from the state q′i to both qj and q′j .

— The EFΣ formula ϕ is constructed with the following recursive procedure tr that
translates a PA formula into an EFΣ formula.
— tr(∃xi.η′) = EF (bi ∧ tr(η′));

— tr(
∑k

i=1 aixi = c) =
∑k

i=1 aiSum(vi) = c;
— tr(¬η1) = ¬tr(η1); and
— tr(η1 ∧ η2) = tr(η1) ∧ tr(η2).

The correctness of the above construction is proved in the following lemma.

LEMMA 3.6. Consider a PA formula η of length n. There is a polynomial-time con-
struction of a quantitative Kripke structure K with O(n) states, and an EFΣ formula ϕ
of length in O(n), such that η is valid iff K satisfies ϕ.

PROOF. We prove the correctness of the above construction by induction on the
structure of η and its corresponding Kripke structure K.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Temporal Specifications with Accumulative Values A:13

Note that a subformula η′ of η may have some variables that are bound to quantifiers,
for example x3 and x4, and others that are unbound, for example x1 and x2. We shall
express it by writing η′(x1, x2), meaning that x1 and x2 are the parameters of η′.

Analogously to parameterized formulas, we introduce a “parameterized Kripke
structure” to be a quantitative Kripke structure, where some of the numeric variables
have no value in the initial state. The initial values of these variables are given as
parameters. For example, a parameterized Kripke structure K′ in which the numeric
variables v1 and v2 are parameters is written K′(v1, v2). Then, we instantiate K′ to
a standard (i.e., non-parameterized) quantitative Kripke structure by providing spe-
cific values to v1 and v2. That is, K′(m1,m2), for some specific values m1 and m2, is a
quantitative Kripke structure, where v1 = m1 and v2 = m2 in the initial state.

Having the notion of a parameterized Kripke structure, we can define the steps of
the inductive proof: For a subformula η′ of η, the corresponding parameterized Kripke
structure K′ is a substructure of K, having only states qi and q′i such that xi is bound in
η′, as well as a new initial state. A variable vi has the value 0 in the initial state of K′ if
xi is bound in η′, and it is a parameter of K′ otherwise. The new initial state of K′ has
transitions to all other top-level states of K′ (except for itself), meaning to states with
no other incoming transitions. We then show that for every tuple of values M , where
the size of M is the number of unbound variables in η′, it holds that η′(M) is valid iff
K′(M) satisfies ϕ′.

We now proceed to the induction proof itself. The base case is an atomic proposition

η′(x1, . . . , xk) of η, in the form of
∑k

i=1 aixi = c. The corresponding EFΣ formula ϕ′ is
∑k

i=1 aiSum(vi) = c, and the corresponding Kripke structure K′ has a single state (the
new initial state), in which all the numeric variables are parameters. For every specific

The Kripke structure K:

b2

q′
2

v2 = 1

q2

b4

q′
4

v4 = 1

q4

b3

q′
3

v3 = 1

q3

b1

q′
1

v1 = 1

qin

q1

The EFΣ formula ϕ:

The PA formula η in normal form:

η is valid if and only if K satisfies ϕ.

EF (b1 ∧ ¬EF (b2 ∧ 2Sum(v1)− 3Sum(v2) = 2 ∧EF (b3 ∧ −2Sum(v2) + Sum(v3) = 3))∧

∧EF (b4 ∧ −2Sum(v1) + Sum(v2) = 0))

The PA formula η:

∃x1.(¬∃x2. (2x1 − 3x2 = 2 ∧ ∃x3.− 2x2 + x3 = 3) ∧ ∃x4. − x1 + 2x4 = 0)

∃x.(¬∃y. (x+ x = 2y + y + 1 + 1 ∧ ∃z. z = y + y + 3) ∧ ∃y. 2y = x)

The equivalence:

Fig. 3. A reduction from the validity problem of a Presburger-arithmetic formula to the model-checking
problem of a Kripke structure and an EFΣ formula.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman

values m1, . . . ,mk it holds that η′(m1, . . . ,mk) is valid iff K′(m1, . . . ,mk) satisfies ϕ′,
since K′ has no transitions and for every 1 ≤ i ≤ k, Sum(vi) = mi.

In the induction step, we should handle the negation, the conjunction, and the exis-
tential quantifier.

The correctness with respect to negation is straightforward, since the Kripke struc-
ture does not change, and the semantics of negation is the same in Presburger arith-
metic and in EFΣ. That is, a PA formula ¬η′ is valid iff η′ is not valid and a Kripke
structure K′ satisfies an EFΣ formula ¬ϕ′ iff K does not satisfy ϕ′. (Note that this is
true for a branching temporal logic, such as EFΣ, but not for a linear temporal logic.)

The case of a conjunction is more involved, since the Kripke structure might change.
Consider the formula η′(X1 ∪ X2) = η1(X1) ∧ η2(X2), where X1 and X2 are tuples of
unbound variables. Let ϕ1 and ϕ2 be the EFΣ formulas for η1 and η2, respectively, and
let K1(V1) and K2(V2) be the Kripke structures for η1 and η2, respectively, where V1 and
V2 are tuples of numeric variables. Then, the Kripke structure for η′, K′(V1 ∪ V2), has
all the states of K1(V1) and K2(V2), except for their initial states, and its initial state
has the parameterized numeric variables of both of them. For showing the correctness
of the construction, we should show that for every instantiations M1 and M2 of V1 and
V2, respectively, it holds that ϕ1 is satisfied by K1(M1) iff it is satisfied by K′(M1 ∪M2),
and analogously for ϕ2 with respect to K2(M2) and K′(M1 ∪M2). Indeed, this can be
shown by induction on the structure of ϕ1 (and analogously ϕ2). The base case of the
induction, as well as the induction step with respect to negation and to conjunction is
straightforward. As for the induction step with respect to the existential quantifier, let
ϕ1 = EF (bi ∧ ψ), for some i ∈ {1, . . . , k}. If K1 satisfies ϕ1 then so does K′, since its
computation tree includes K1’s computation tree. If K1 does not satisfy ϕ1 then K′ also
cannot satisfy it, since all the states in its computation tree that are not a part of K1’s
computation tree assign F to bi.

It is left to show the correctness with respect to the existential quantifier. Consider
the subformula η′(X) = ∃xi.η′′(X, xi), where i ∈ {1, . . . , k} and X is a tuple of un-
bound variables. Let ϕ′′ and K′′(V, vi) be the EFΣ formula and the Kripke structure,
respectively, for η′′, where V is a tuple of numeric variables. The EFΣ formula ϕ′, for
η′, is defined by the above construction to be EF (bi ∧ ϕ′′). The Kripke structure K′,
for η′, is the same as K′′, except for replacing the initial state of K′′ with the follow-
ing three states: a new initial state, having the numeric variables of V as parameters,
from which there are transitions to qi and to q′i. The outgoing transitions of K′′’s initial
state are the outgoing transitions from q′i in K′. Consider an instantiation of X and of
V with a tuple M of specific values. Now, if η′(M) is valid, then there exists a value m
such that η′′(M,m) is valid. By the induction assumption, K′′(M,m) satisfies ϕ′′. Thus,
the following path p in K′(M) satisfies bi ∧ ϕ′′: if m = 0 then p goes directly from the
initial state to q′i, otherwise it goes to qi, makes m−1 self loops and then goes to q′i. The
computation tree starting in q′i is the same as the computation tree of K′′, thus satis-
fying ϕ′′. Therefore, K′(M) satisfies ϕ′. As for the other direction, assume that K′(M)
satisfies ϕ′. Then there exists a path p that satisfies (bi∧ϕ′′). Since bi is true only in q′i,
it follows that p ends in q′i, after making some m ≥ 0 self loops in qi. Hence, K′′(M,m)
satisfies ϕ′′, and by the induction assumption η′′(M,m) is valid. Hence, η′(M) is valid.

COROLLARY 3.7. Model checking EFΣ is 2NEXPTIME-hard.

PROOF. Directly follows from Lemma 3.6 and the known lower bound for the valid-
ity problem of a Presburger arithmetic formula [Fischer and Rabin 1974].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Temporal Specifications with Accumulative Values A:15

3.3. Controlled Accumulation

One may wish to have some control on when and how the accumulation is done, in
order, for example, to make assertions on the average waiting time between a request
and a grant. For the latter, we need the accumulative-sum of the time-ticks between
the requests and their corresponding grants, divided by the number of such request-
grant transactions.

Viewing the period between a request and a grant as a “transaction”, one may wish
to further generalize the accumulation with respect to transactions. For example, han-
dling discontinuous transactions, speaking about their average cost, and setting dif-
ferent importance values to their different occurrences.

All that, and more, can be done by adding the following controlled accumulation
atomic-assertion to the logic: cAvg(u, r1, v, r2) ≥ c, for a numeric variable u, a positive
numeric variable v, regular expressions r1 and r2 over 2P , and a constant c. The value
of a controlled average at a node x of the computation tree is defined as follows (we use
r(y) to indicate that the prefix y is a member in the language of the regular expression
r).

[[cAvg(u, r1, v, r2)]]x =

∑

(y≤x | r1(y))
[[u]]y

∑

(y≤x | r2(y))
[[v]]y

.

Intuitively, r1 indicates whether the current point in time is relevant to the transac-
tion, according to which we sum-up the costs u, while r2 indicates a new transaction
occurrence. The value of v indicates the importance of the transaction-occurrence, de-
noting its influence on the averaging.

Note that the controlled average is undefined before the first true valuation of r2.
Indeed, there is no meaning to a transaction average before the first transaction occur-
rence.

Controlled-average can obviously express standard summation and averaging. In-
deed, for all nodes x, we have that

[[Sum(u)]]x = [[cAvg(u, T, 1, “First computation step”)]]x
[[Avg(u)]]x = [[cAvg(u, T, 1, T)]]x

For example, the average waiting time between a request (denoted p) and a grant
(denoted q) over an alphabet Σ can be defined by: cAvg(1, r1, 1, r2), where r1 = Σ∗p(Σ \
q)∗ describes all prefixes with a request that is not yet granted, and r2 = (ε+Σ∗q)(Σ \
p)∗p) describes all prefixes in which a request that needs a grant has been issued.
Thus, cAvg(1, r1, 1, r2) is the sum of the waiting durations divided by the number of
requests. Another interesting special case is when r1 = r2, providing the ratio between
the summations of two variables.

Decidability. We show that adding controlled-average assertions to the logic EFΣ

preserves the decidability of the model-checking problem.
We first reduce the problem to model checking assertions of the form

cAvg(u, p1, v, p2) ≥ c, for Boolean variables p1 and p2. The semantics is the expected
one: the values of u and v are taken into an account only in states in which p1 and
p2 are valid, respectively. In order to talk about p1 and p2 rather than r1 and r2, we
refer to the product K × A1 × A2 of the Kripke structure K and the deterministic fi-
nite automata A1 and A2 for r1 and r2, in which p1 and p2 are true in the accepting
states of A1 and A2, respectively. (A product of a Kripke structure and an automa-
ton is formally described in Section 4.) Note that since A1 and A2 are deterministic,
then for every node x in the computation tree of K, there are unique states of A1 and
A2 that correspond to x, which we denote by A1(x) and A2(x), respectively. It is easy
to see that [[cAvg(u, r1, v, r2)]]x, for a node x in the computation tree of K is equal to

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman

[[cAvg(u, p1, v, p2)]]〈x,A1(x),A2(x)〉 in the computation tree of K × A1 × A2. Accordingly,
it is enough to show the decidability of controlled-accumulation assertions that use
Boolean variables instead of regular expressions.

Now, a controlled-average assertion with Boolean variables p and q, instead of reg-
ular expressions, can be reduced to an assertion of the form Sum(v) ≥ 0, as follows.
Consider an assertion cAvg(u, p, v, q) ≥ c. We define a new numeric variable v′ with the
following value (for all states s):

[[v′]]s =

0 if [[p]]s = F and [[q]]s = F

−cv if [[p]]s = F and [[q]]s = T

u if [[p]]s = T and [[q]]s = F

u− cv if [[p]]s = T and [[q]]s = T

PROPOSITION 3.8. Consider a Kripke structure K with a numeric variable u, a
positive numeric variable v and Boolean variables p and q. Let K′ be a Kripke struc-
ture identical to K, up to having a new numeric variable v′, defined as above, for a
constant number c. Then, for every node x of the computation tree of K′, we have that
cAvg(u, p, v, q) ≥ c iff Sum(v′) ≥ 0.

PROOF. We have that:

[[cAvg(u, r1, v, r2)]]x ≥ c iff
∑

(y≤x | [[p]]y)[[u]]y∑
(y≤x | [[q]]y)[[v]]y

≥ c iff

∑

(y≤x | [[p]]y)
[[u]]y ≥ c(

∑

(y≤x | [[q]]y)
[[v]]y) iff

∑

(y≤x | [[p]]y)
[[u]]y −

∑

(y≤x | [[q]]y)
c[[v]]y ≥ 0 iff

∑

y≤x v
′ ≥ 0 iff

[[Sum(v′)]]x ≥ 0.

3.3.1. Comparing Between Two Controlled Accumulations. The logic EFΣ allows to compare
between two standard accumulations of the same kind, for example, Avg(u1) > Avg(u2)
and Sum(v1) = Sum(v2). Yet, it only allows to compare a controlled accumulation

against a constant, for example cAvg(u1, T, u2, T) = 5, which equals to Sum(u1)
Sum(u2)

= 5.

A natural question is whether EFΣ can be further extended to allow the compari-

son between two controlled accumulations, for example Sum(u1)
Sum(u2)

= Sum(v1)
Sum(v2)

. It turns out

that such an extension leads to the undecidability of the model-checking problem. The
proof extends the construction as per Lemma 3.6, showing a reduction from the valid-
ity problem of Peano arithmetic, which is known to be undecidable [Gödel 1931], as
described below.

Peano arithmetic extends Presburger arithmetic by adding the multiplication func-
tion, x · y, to the signature of the first order formulas. An equivalent extension is
achieved by adding the ternary relation IsMultiply(x, y, z) that is defined to be true
iff x · y = z. Now, the construction as per Lemma 3.6 reduces the validity problem of
a Presburger arithmetic formula into the model-checking problem of a Kripke struc-
ture K and an EFΣ formula ϕ. By the construction, a variable x of the Presburger
formula is represented by Sum(vx) in the EFΣ formula. Extending EFΣ with a com-
parison between two controlled averages, allows to represent IsMultiply(x, y, z) by the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Temporal Specifications with Accumulative Values A:17

assertion (Sum(vx) = 0) ∧ (Sum(vz) = 0) ∨ (Sum(vz)
Sum(vx)

= Sum(vy)), as it holds iff

Sum(vz) = Sum(vx) · Sum(vy), which holds iff z = x · y.

3.4. Undecidability

We show that the model-checking problem for extended logics that have the temporal
operators EG or EU (or their duals, AF or AR) is undecidable. This implies the unde-
cidability of the extension of all temporal logics that include or can be translated to
these operators. In particular, the model-checking problems for the extensions of CTL*
[Emerson and Halpern 1983], LTL [Pnueli 1977], RTL [Sistla and Zuck 1993], CTL
[Emerson and Clarke 1982], STL [Alur and Henzinger 1999], UB [Ben-Ari et al. 1983],
and EG [Ben-Ari et al. 1983] are all undecidable.

The proof is by a reduction from the halting problem of counter machines. Given a
counter machine M, we construct a Kripke structure K and a specification ϕ such that
K satisfies ϕ iff M halts. The proof goes along similar lines to those used for proving
the undecidability of model-checking Petri nets [Esparza 1996].

The intuitive explanation. A quantitative Kripke structure has the flavor of a counter
machine, in the sense that the states correspond to the counter machine command-
lines and the accumulated values to the counters. With two numeric variables, it is
possible to mimic two counters. The crucial difference is that a counter machine has
a conditional-jump command, in which it can check the counter values and branch
accordingly. In contrast, the transitions of a Kripke structure are not guarded by the
accumulated values.

Equipped with a suitable specification language, we can address this difference as
follows. The Kripke structure uses its nondeterminism and has two transitions from
each state associated with a conditional jump. These transitions can be taken regard-
less of the accumulated values. The specification, however, would limit attention to
computations of the Kripke structure in which transitions are taken properly. As we
show, this can be done using the G or U temporal operators. Below we describe the
reduction in detail.

Counter machines. An n-counter machine is a sequence of uniquely-labeled com-
mands, involving n counters. The counters are initialized to non-negative integers, or
equivalently, all are initialized to zero and their desired initial value is set by the first
machine commands. There are five command types, as demonstrated in Example 3.9.

Example 3.9. A machine with two counters, x and y. The machine adds the value
of x to y and nullifies x.
l1. if x = 0 then goto l5 else goto l2
l2. x := x− 1

l3. y := y+ 1

l4. goto l1
l5. halt

We refer to commands of the form if x = 0 then goto l5 else goto l2 as x-jumps. We
assume that the machine never reaches a line of the form x := x− 1 when the counter
x is zero. Since we can add a guarding x-jump before reducing the value of x, the
assumption does not lose generality.

The reduction. Given a two-counter machine M, we construct a Kripke structure
K and a specification ϕ, such that K satisfies ϕ iff M does not halt. The values of
the Kripke structure variables are from {0, 1,−1} and the specification only uses the
EG modality. The specification may either relate to the accumulative sum or to the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman

accumulative average of K’s variables. An illustration of the reduction is given in Fig. 4,
with respect to the counter machine of Example 3.9.

For a two-counter machine M with n lines and the counters x and y, we define the
Kripke structure K = 〈P, V, S, sin, R, L〉 as follows.

— P = {halt, xz, xp, yz, yp}. The latter variables are used for denoting whether a counter,
for example x, should be zero (xz), or positive (xp), in a proper computation.

— V = {u, v}, corresponding to the x and y counters of M, respectively.
— S = {si | li ∈ M} ∪ {s′i, s

′′
i | li is a conditional jump}.

— sin = s1.
— R = {〈si, s

′
i〉, 〈si, s

′′
i 〉, 〈s

′
i, sj〉, 〈s

′′
i , sm〉 |

li = if x = 0 then goto lj else goto lm}
∪ {〈si, si+1〉 | li ∈ {x := x+ 1, x := x− 1,

y := y+ 1, y := y− 1}}
∪ {〈si, sj〉 | li = goto lj}
∪ {〈si, si〉 | li = halt}.

Thus, the transitions follow the control of M, where each of the jumps in a conditional
jump command li is partitioned into two transitions, visiting the intermediate states
s′i (in case the jump is according to the case x = 0) or s′′i (in case the jump is according
to the case x 6= 0).

— L: All values are F or 0, except for the following values, defined for all 1 ≤ i ≤ n:
[[u]]si = 1 if li = x := x+ 1;
[[u]]si = −1 if li = x := x− 1;
[[v]]si = 1 if li = y := y+ 1;
[[v]]si = −1 if li = y := y− 1;

[[xz]]s′
i
= T if li is an x jump;

[[xp]]s′′i = T if li is an x jump;
[[yz]]s′i = T if li is a y jump;
[[yp]]s′′

i
= T if li is a y jump;

[[halt]]si = T if li = halt.

Consider the following formulas.

ψProper = (xz → Sum(u) = 0) ∧ (xp → Sum(u) 6= 0) ∧

(yz → Sum(v) = 0) ∧ (yp → Sum(v) 6= 0).

ϕ = EG(ψProper ∧ ¬halt).

ϕ′ = ψProper EU halt.

Note that the specification can be equivalently defined using Avg() instead of Sum().

LEMMA 3.10. Given a counter machine M, let K, ϕ, and ϕ′ be as defined above.
Then, M does not halt iff K |= ϕ iff K 6|= ϕ′.

PROOF. The counter machine M is deterministic, having a single run. A computa-
tion of K simply follows the run of M, except for the conditional jumps, in which it has
nondeterminism. It may either follow the run of M (that is, in states si of an x jump,
branch to s′i or s′′i according to the value of x) or violate it (that is, branch not according
to the value of x). Note that all the computations of K violate the run of M, except for
exactly one computation r that follows it. Hence, all computations of K, except for r, do
not satisfy ϕ, while r satisfies ϕ iff M does not halt. Also, r satisfies ϕ′ iff M halts.

Since the operatorG can be expressed by the operatorW (Weak Until), and similarly
for U and R (Release), Lemma 3.10 implies undecidability also for the EW and ER
modalities. Using negation, we get undecidability also for the extension of logics with

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Temporal Specifications with Accumulative Values A:19

s4

v = 1

u = −1

s5

xp

s′
1

s′′
1

s1

xz

s2

halt

s3

Fig. 4. The Kripke structure corresponding to the counter machine of Example 3.9.

the AF , AR, AR, and AW modalities. It follows that the decidability result we have
seen in Section 3.1 for a logic with the modalities EF and EX is maximal. We conclude
that extending all the standard temporal logics with accumulative values, except for
the EF logic, makes the model-checking problem undecidable.

COROLLARY 3.11. The model-checking problem is undecidable for the temporal log-
ics CTL⋆, LTL , RTL, CTL, STL, UB, and EG, extended by the atomic assertion
Sum(v) ≥ c.

3.5. Boolean Kripke Structures

Our setting considers a quantitative Kripke structure and a specification over its accu-
mulated values. One may consider a possibly simpler setting, where the Kripke struc-
ture is Boolean and the specification refers to the average of truth values. For an atomic
proposition p, let Avg(p) denote the average of truth values of p up to the current point
in time. We can then have specifications with new atomic assertions, like Avg(p) ≥ 1

2 .
Is there a temporal logic whose extension with such atomic assertions is decidable,

while its extension with respect to quantitative Kripke structures is undecidable? No.
The undecidability proofs of Section 3.4 also apply to the case of Boolean Kripke struc-
tures, by a small adaptation: Instead of having numerical variables u and v with values
{1, 0,−1}, we can have atomic propositions p and q, and represent the numeric values
by −1 = FF, 0 = TF, and 1 = TT. For example, whenever there is a state in the quanti-
tative Kripke structure with u = 0 and v = 1, we produce two consecutive states in the
Boolean Kripke structure, one with p = T and q = T and the other with p = F and q = T,
corresponding to TF for u = 0 and TT for v = 1. (The Boolean Kripke structure that
corresponds to the machine in Example 3.9 is shown in Fig. 5. Note that the original
states s1, s

′
1 and s′′1 were not doubled, unlike the other original states, due to a local

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman

s′
5

¬p,¬q

s′
4

p, q
¬p,¬q

s′
1 s′′

1

xp

¬p,¬q
xz

s′
2

¬p,¬q

s3

p, q

s′
3

¬p, q

p, q

s4

s5

p, q
¬p,¬q

halt

s1

s2

¬p, q

Fig. 5. The Boolean Kripke structure corresponding to the counter machine of Example 3.9.

optimization.) The formula ψProper is adjusted accordingly as follows.

ψProper = (xz → Avg(p) =
1

2
) ∧ (xp → Avg(p) 6=

1

2
) ∧

(yz → Avg(q) =
1

2
) ∧ (yp → Avg(q) 6=

1

2
).

4. LTL WITH PATH ACCUMULATIONS

In this section, we show the decidability of model checking a quantitative Kripke struc-
ture and a specification given by an LTLlimΣ formula (an LTL formula extended by
path-accumulation assertions, as defined in Section 2). An example of such an extended
formula is:

FG(q) → ((LimSupAvg(u) = 5) ∨Gp ∧ (LimInfAvg(v) > 4)).

Given an LTLlimΣ formula ψ, we shall consider its negation ϕ = ¬ψ, and check
whether the given Kripke structure K has a computation that satisfies ϕ. We do it
as follows:

— Translating ϕ to ϕ′ = ϕ1∨ϕ2∨. . .∨ϕn, such that each ϕi is of the form χ∧ξ, where χ is
a Boolean combination of limit-average assertions and ξ is a standard LTL formula.

— For each disjunct χ ∧ ξ, checking whether K has a computation that satisfies ξ ∧ χ.
We do this by translating ξ to a nondeterministic Büchi automaton (NBW) A [Vardi
and Wolper 1986] and checking whether the product K × A, which is a quantitative
Kripke structure with a fairness condition, has a fair computation that satisfies the
limit-average formula χ.

Below we describe the model-checking procedure in detail and prove its correctness.

Detaching limit-average assertions. Consider an LTLlimΣ formula ϕ with n limit-
average assertions, θ1, . . . , θn. For bi ∈ {T, F}, we use ϕ(b1, . . . , bn) to denote the LTL

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Temporal Specifications with Accumulative Values A:21

formula obtained form ϕ by syntactically replacing all occurrences of the assertion θi
by the truth value bi. Recall that path-accumulation assertions are interpreted with
respect to entire paths and their value is the same in all the suffixes of a path. There-
fore, for an LTLlimΣ formula ϕ with n limit-average assertions, θ1, . . . , θn, the LTLlimΣ

formula ϕ′ defined below is equivalent to ϕ.

ϕ′ = [θ1 ∧ θ2 ∧ . . . ∧ θn ∧ ϕ(T, T, . . . , T)]

∨ [¬θ1 ∧ θ2 ∧ . . . ∧ θn ∧ ϕ(F, T, . . . , T)]

∨
...

∨ [¬θ1 ∧ ¬θ2 ∧ . . . ∧ ¬θn ∧ ϕ(F, F, . . . , F)]

Note that in the formula ϕ′, each disjunct is a conjunction of a standard LTL formula
and a Boolean combination of limit-average assertions. We refer to the latter as a limit-
average formula.

Now, since we check for the existence of a computation that satisfies ϕ, each disjunct
of ϕ′ can be checked separately. Therefore, we should only solve the problem of deciding
whether there is a computation satisfying χ ∧ ξ for a limit-average formula χ and a
standard LTL formula ξ. Before describing the solution, we recall the relevant theory
of automata on infinite words.

A nondeterministic Büchi automaton (NBW, for short) is A = 〈Σ, Q, qin, δ, α〉, where
Σ is the input alphabet,Q is a finite set of states, qin ∈ Q is an initial states, δ : Q×Σ →
2Q is a transition function, and α ⊆ Q is a set of accepting states. A run r = r0, r1, · · · of
A on a word w = w1 ·w2 · · · ∈ Σω is an infinite sequence of states such that r0 = qin, and
for every i ≥ 0, we have that ri+1 ∈ δ(ri, wi+1). The run r is accepting iff inf(r) ∩ α 6= ∅.
An automaton accepts a word if it has an accepting run on it. The language of an
automaton A, denoted L(A), is the set of words that A accepts. Given an LTL formula
ξ over a set P of atomic propositions, it is possible to translate ξ to an NBW Aξ over
the alphabet 2P . For every word w ∈ (2P)ω, the NBW Aξ has an accepting run on w iff
a computation that is labeled w satisfies ϕ [Vardi and Wolper 1986].

Consider a Kripke structure K = 〈P, V, S, sin, R, L〉 and the NBW Aξ =
〈2P , Q, qin, δ, α〉. We define their product B = K × Aξ as the fair Kripke structure B =
〈∅, V, S×Q, 〈sin, qin〉, R′, L′, S×α〉, where R′(〈s, q〉, 〈s′, q′〉) iff R(s, s′) and q′ ∈ δ(q, [[P]]s),
and L′ is such that for every v ∈ V, s ∈ S, and q ∈ Q, we have [[v]]〈s,q〉 = [[v]]s. Note
that A’s transitions correspond to the labeling of K’s Boolean variables, ensuring that
a word over which A runs is a labeling of K’s computation.

Checking for a fair computation with limit-average properties. Given a limit-average
formula χ and quantitative Kripke structure K with a Büchi fairness condition, we
check whether K has a fair computation that satisfies χ. The problem for Kripke struc-
tures without fairness was solved in [Alur et al. 2009]. (The paradigm in [Alur et al.
2009] is different from ours, as the limit-average formula there constitutes the ac-
ceptance conditions for the automata.) For extending the technique there to Kripke
structures with fairness, we first need the following lemma. It intuitively shows that
inserting infinitely, but negligibly, many constant values to a computation does not
change its limit-average values.

LEMMA 4.1. Consider an infinite computation π = x1, x2, . . . and a finite compu-
tation µ = y1, y2, . . . , yk with a numeric variable v absolutely bounded by a constant
c (that is, |[[v]]xi

| ≤ c and |[[v]]yj
| ≤ c for all i ≥ 1 and 1 ≤ j ≤ k). Let π′ be the

infinite computation obtained from π by inserting µ at positions {2i | i ∈ N}. Then,
[[LimInfAvg(v)]]π = [[LimInfAvg(v)]]π′ and [[LimSupAvg(v)]]π = [[LimSupAvg(v)]]π′ .

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman

PROOF. Let π′ = z1, z2, z3, For showing that π and π′ have the same limit-
average values, we define a surjective mapping ρ between the positions of π′ and π,

such that ρ(j1) ≥ ρ(j2) iff j1 ≥ j2, and show that lim
j→∞

|
∑j

i=0[[v]]zi
j

−
∑ρ(j)

i=0 [[v]]xi

ρ(j) | converges

to 0.
We denote the range of a function f by range(f) and define the functions Move : N →

N, Next : N → N, and ρ : N → N as follows.

Move(j) = j + k · |{i | i ∈ N and 2i ≤ j}|;

Next(j) = min{i | i ∈ range(Move) and i ≥ j}; and

ρ(j) = Move−1(Next(j)).

Intuitively, every position of π′ that originated in π is mapped by ρ to its original
position in π, while a position of π′ that originated in µ is treated as the next position
of π′ that originated in π.

Now, for every j ∈ N, we have that |
∑j

i=0[[v]]zi
j

−
∑ρ(j)

i=0 [[v]]xi

ρ(j) | ≤ | c(j−ρ(j))
ρ(j) |. Hence,

lim
j→∞

|
∑j

i=0[[v]]zi
j

−
∑ρ(j)

i=0 [[v]]xi

ρ(j) | ≤ lim
j→∞

| c(j−ρ(j))
ρ(j) | = 0, as required.

We can now show how to adjust the emptiness algorithm of [Alur et al. 2009] for
handling the Büchi fairness condition.

LEMMA 4.2. Consider a quantitative Kripke structure B with a Büchi fairness con-
dition α. There is an algorithm to check whether B has a fair computation that satisfies
a limit-average formula χ.

PROOF. In [Alur et al. 2009], the authors describe an algorithm to check whether a
Kripke structure K (without fairness) has a computation that satisfies a limit-average
formula χ. The algorithm is based on a procedure ComponentCheck(M,χ), which is
called in over every reachable maximally strongly connected component M of K. It
is shown that ComponentCheck(M,χ) = T iff there is a computation of M that satisfies
χ. Since [[LimInfAvg(v)]]π and [[LimSupAvg(v)]]π , are indifferent to any finite prefix of π, it
follows that K has a computation that satisfies χ iff some component M of K has such
a computation [Alur et al. 2009].

We claim that B has a fair computation satisfying χ iff B has a maximally strongly
connected component M such that M ∩ α 6= ∅ and ComponentCheck(M,χ) = T.

Obviously, if B has no such component, then no computation of B can satisfy both
α and χ. As for the other direction, assume that there is a component M with a state
s ∈M ∩α, such that ComponentCheck(M,χ) = T. Let π be a computation of B, such that
inf(π) ⊆M and π satisfies χ. If s ∈ inf(r) then we are done. Otherwise, let s′ be a state
in inf(r), and let µ be a finite cycle in M that visits both s and s′.

Consider the computation π′ of B that is derived from π by inserting µ at the positions
{2i | i ∈ N}. We have that π satisfies the Büchi condition α, as it visits s ∈ α infinitely
often. In addition, by Lemma 4.1, the limit-average values of π′ are the same as those
of π, thus π′ also satisfies the limit-average formula χ, and we are done.

We can thus conclude:

THEOREM 4.3. The model-checking problem for LTLlimΣ is decidable.

Note that model checking an LTLlimΣ formula is also decidable with respect to a
quantitative Kripke structure with a fairness condition. The reason is that the algo-
rithm already handles a Büchi condition, derived from the LTL formula, which can be
combined with the fairness condition of the Kripke structure. Also, since the model-

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Temporal Specifications with Accumulative Values A:23

checking procedure anyway translates the temporal-logic component to an NBW, we
can easily extend it to handle LTLlimΣ with a regular layer – one in which the path
formulas may also contain regular expressions.

Complexity. The algorithm in the proof of Lemma 4.2 requires time and space that
are exponential in the Kripke structure and doubly exponential in the LTL formula.
Yet, replacing this algorithm with techniques presented in [Kosaraju and Sullivan
1988; Velner and Rabinovich 2011; Velner 2012] allows for improved complexities, as
described below.

Consider a Kripke structure K with n states and an LTLlimΣ formula of length m.
Recall that we translate the LTLlimΣ formula to a disjunction of up to 2m subformulas,
each of which is a conjunction of a standard LTL formula ξ and a limit-average formula
χ. Moreover, χ is a conjunction of up to m limit-average assertions. Our model-checking
procedure iterates over the disjuncts, checking each of them separately. This is done
by translating ξ to an NBW A with up to 2m states, constructing the product of A
and K, which is a quantitative Kripke structure K′ with a Büchi fairness condition,
and checking whether K′ has a fair computation that satisfies χ. By Lemma 4.1, the
problem reduces to checking whether K′ has some computation (not necessarily fair)
satisfying χ. As with model checking of standard LTL formulas, the NBW A and the
product Kripke structure K′ can be constructed on-the-fly, using space that is polyno-
mial in the LTL formula.

In [Velner 2012], Velner studied the problem of deciding whether a Kripke structure
K′ has a computation that satisfies a conjunction of limit-average assertions, all of
which are of the form LimSupAvg(v) ≥ 0 or LimInfAvg(v) ≥ 0, for quantitative variables
v. It is shown in [Velner 2012] that the problem can be solved deterministically in time
that is polynomial in the number of states in K′, as well as non-deterministically in
space that is logarithmic in K′ and polynomial in the assertions. Our limit-average
formula χ is richer in three aspects: i) it may have strict inequalities; ii) it allows
for ≤; and iii) it may have arbitrary constants, not only 0. The technique in [Vel-
ner 2012] can be extended to strict inequalities, as done in [Velner and Rabinovich
2011], which resolves aspect (i). For handling aspect (ii), one can add new quantitative
variables with corresponding weights. For example, LimSupAvg(v) ≥ 5 is changed to
LimSupAvg(v′) ≥ 0, where v′ is a new variable, taking the value (v − 5) in all edges.
Finally, aspect (iii) can be solved by adding new variables that equal to the original
ones, but with an opposite sign, and replacing between LimSupAvg and LimInfAvg. For
example, LimSupAvg(v) ≤ 0 is changed to LimInfAvg(v′) ≥ 0, where v′ is a new variable,
taking the value (−v) in all edges.

We can thus conclude with the following. Since LTL model checking is PSPACE-
complete, the complexities are tight.

PROPOSITION 4.4. Model-checking a Kripke structure with n states and an LTLlimΣ

formula of length m can be solved deterministically in time complexity that is polyno-
mial in n and exponential in m, as well as non-deterministically in space complexity
that is logarithmic in n and polynomial in m.

Acknowledgments

We thank Dejan Nickovic for stimulating discussions on controlled accumulation,
Yaron Velner for discussions that have led to improving the complexity of LTLlimΣ

model checking, and the anonymous reviewers for their helpful comments and sugges-
tions.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 U. Boker, K. Chatterjee, T. A. Henzinger, and O. Kupferman

REFERENCES

ALUR, R., DEGORRE, A., MALER, O., AND WEISS, G. 2009. On omega-languages defined by mean-payoff
conditions. In FOSSACS, L. de Alfaro, Ed. LNCS Series, vol. 5504. Springer, 333–347.

ALUR, R. AND HENZINGER, T. 1994. A really temporal logic. Journal of the ACM 41, 1, 181–204.

ALUR, R. AND HENZINGER, T. A. 1999. Computer-aided verification: An introduction to model building and
model checking for concurrent systems. Book in preparation.

BEN-ARI, M., PNUELI, A., AND MANNA, Z. 1983. The temporal logic of branching time. Acta Inf. 20, 207–
226.

BJORKLUND, H., SANDBERG, S., AND VOROBYOV, S. 2004. A combinatorial strongly subexponential strat-
egy improvement algorithm for mean payoff games. In MFCS’04. 673–685.

BLOEM, R., CHATTERJEE, K., HENZINGER, T. A., AND JOBSTMANN, B. 2009. Better quality in synthe-
sis through quantitative objectives. In CAV, A. Bouajjani and O. Maler, Eds. LNCS Series, vol. 5643.
Springer, 140–156.

BOKER, U., CHATTERJEE, K., HENZINGER, T. A., AND KUPFERMAN, O. 2011. Temporal specifications with
accumulative values. In Proc. 26th IEEE Symp. on Logic in Computer Science. 43–52.

BULTAN, T., GERBER, R., AND PUGH, W. 1997. Symbolic model checking of infinite state systems using
Presburger arithmetic. In CAV. LNCS Series, vol. 1254. 400–411.

CHAKRABARTI, A., DE ALFARO, L., HENZINGER, T. A., AND STOELINGA, M. 2003. Resource interfaces. In
Proc. of EMSOFT: Embedded Software. LNCS 2855. Springer, 117–133.

CHATTERJEE, K. AND DOYEN, L. 2012. Energy parity games. Theor. Comput. Sci. 458, 49–60.

CHATTERJEE, K., DOYEN, L., AND HENZINGER, T. A. 2008. Quantitative languages. In Proc. of CSL. LNCS
5213. Springer, 385–400.

CHATTERJEE, K., DOYEN, L., HENZINGER, T. A., AND RASKIN, J. F. 2010. Generalized mean-payoff and
energy games. In FSTTCS. LIPIcs Series, vol. 8. 505–516.

CHERNIAVSKY, J. C. 1976. Simple programs realize exactly presberger formulas. SIAM Journal on Comput-
ing 5, 4, 666–677.

COURCOUBETIS, C., ALUR, R., AND DILL, D. 1991. Model-checking for probabilistic real-time system. In
Proc. 18th Int. Colloq. on Automata, Languages, and Programming. LNCS. Springer.

CULIK II, K. AND KARHUMÄKI, J. 1994. Finite automata computing real functions. SIAM J. Comput. 23, 4,
789–814.

DE ALFARO, L., FAELLA, M., HENZINGER, T., MAJUMDAR, R., AND STOELINGA, M. 2005. Model checking
discounted temporal properties. Theoretical Computer Science 345, 1, 139–170.

DEMRI, S. AND SANGNIER, A. 2010. When model-checking freeze LTL over counter machines becomes
decidable. In FOSSACS. LNCS Series, vol. 6014. 176–190.

DROSTE, M. AND GASTIN, P. 2007. Weighted automata and weighted logics. Theoretical Computer Sci-
ence 380, 69–86.

DROSTE, M., KUICH, W., AND RAHONIS, G. 2008. Multi-valued MSO logics over words and trees. Funda-
menta Informaticae 84, 305–327.

DROSTE, M., KUICH, W., AND VOGLER, H. 2009. Monograph in theoretical computer science: Eatcs series.
In Handbook of Weighted Automata. Springer.

DROSTE, M. AND KUSKE, D. 2003. Skew and infinitary formal power series. In Proc. of ICALP. LNCS 2719.
Springer, 426–438.

DROSTE, M. AND MEINECKE, I. 2010. Describing average- and longtime-behavior by weighted MSO logics.
In MFCS. 537–548.

EMERSON, E. A. AND CLARKE, E. M. 1982. Using branching time temporal logic to synthesize synchroniza-
tion skeletons. Sci. Comput. Program. 2, 3, 241–266.

EMERSON, E. A. AND HALPERN, J. Y. 1983. “sometimes” and “not never” revisited: On branching versus
linear time. In POPL. 127–140.

ÉSIK, Z. AND KUICH, W. 2004. An algebraic generalization of omega-regular languages. In Proc. of MFCS.
LNCS 3153. 648–659.

ESPARZA, J. 1996. Decidability and complexity of Petri net problems - an introduction. In Petri Nets,
W. Reisig and G. Rozenberg, Eds. LNCS Series, vol. 1491. Springer, 374–428.

FISCHER, M. AND RABIN, M. O. 1974. Super-exponential complexity of Presburger arithmetic. In Proceed-
ings of the SIAM-AMS Symposium in Applied Mathematics. Vol. 7. 27–41.

GINSBURG, S. AND SPANIER, E. 1966. Semigroups, Presburger formulas and languages. Pacific Journal of
Mathematics 16, 2, 285–296.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Temporal Specifications with Accumulative Values A:25

GÖDEL, K. 1931. Über formal unentscheidbare sätze der principia mathematica und verwandter systeme I.
Monatshefte für Mathematik und Physik 38, 173–198.

GÖLLER, S., HAASE, C., OUAKNINE, J., AND WORRELL, J. 2012. Branching-time model checking of para-
metric one-counter automata. In FoSSaCS. LNCS Series, vol. 7213. 406–420.

GURARI, E. M. 1985. Decidable problems for powerful programs. J. ACM 32, 2, 466–483.

GURARI, E. M. AND IBARRA, O. H. 1979. The complexity of the equivalence problem for counter machines,
semilinear sets, and simple programs. In STOC. 142–152.

GURFINKEL, A. AND CHECHIK, M. 2003. Multi-valued model checking via classical model checking. In Proc.
of CONCUR. LNCS 2761. Springer, 263–277.

KOSARAJU, S. R. AND SULLIVAN, G. F. 1988. Detecting cycles in dynamic graphs in polynomial time (pre-
liminary version). In STOC. ACM, 398–406.

KUICH, W. AND SALOMAA, A. 1986. Semirings, Automata, Languages. Monographs in Theoretical Computer
Science. Series, vol. 5. Springer.

KUPFERMAN, O. AND LUSTIG, Y. 2007. Lattice automata. In Proc. of VMCAI. LNCS 4349. Springer, 199–
213.

KUPFERMAN, O. AND VARDI, M. 2006. Memoryful branching-time logics. In Proc. 21st IEEE Symp. on Logic
in Computer Science. 265–274.

MANNA, Z. AND PNUELI, A. 1979. The modal logic of programs. In ICALP, H. A. Maurer, Ed. LNCS Series,
vol. 71. Springer, 385–409.

MINSKY, M. 1967. Computation: Finite and Infinite Machines 1 Ed. Prentice Hall.

OPPEN, D. C. 1978. A 22
2pn

upper bound on the complexity of Presburger arithmetic. J. Comput. Syst.
Sci. 16, 3, 323–332.

PARIKH, R. J. 1966. On context-free languages. J. of the ACM 13, 4, 570–581.

PNUELI, A. 1977. The temporal logic of programs. In FOCS. IEEE, 46–57.

PRESBURGER, M. 1929. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen,
in welchem die Addition als einzige Operation hervortritt. Comptes Rendus du I Congrès de
Mathématiciens des Pays Slaves, 92–101.

REDDY, C. R. AND LOVELAND, D. W. 1978. Presburger arithmetic with bounded quantifier alternation. In
Proceedings of the tenth annual ACM symposium on Theory of computing. STOC ’78. ACM, 320–325.

SCHÜTZENBERGER, M. P. 1961. On the definition of a family of automata. Information and Control 4, 245–
270.

SEIDL, H., SCHWENTICK, T., MUSCHOLL, A., AND HABERMEHL, P. 2004. Counting in trees for free. In
ICALP. LNCS Series, vol. 3142. 1136–1149.

SISTLA, A. P. AND ZUCK, L. D. 1993. Reasoning in a restricted temporal logic. Inf. Comput. 102, 2, 167–195.

VARDI, M. Y. AND WOLPER, P. 1986. An automata-theoretic approach to automatic program verification
(preliminary report). In LICS. IEEE Computer Society, 332–344.

VELNER, Y. 2012. The complexity of mean-payoff automaton expression. In ICALP (2). LNCS Series, vol.
7392. 390–402.

VELNER, Y. AND RABINOVICH, A. 2011. Church synthesis problem for noisy input. In FOSSACS. Lecture
Notes in Computer Science Series, vol. 6604. Springer, 275–289.

ZWICK, U. AND PATERSON, M. 1996. The complexity of mean payoff games on graphs. Theoretical Computer
Science 158, 343–359.

Received Month Year; revised Month Year; accepted Month Year

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

