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Abstract—There is recently a significant effort to add quantita-
tive objectives to formal verification and synthesis. We intoduce
and investigate the extension of temporal logics with quaiitative
atomic assertions, aiming for a general and flexible framewd
for quantitative-oriented specifications.

In the heart of quantitative objectives lies the accumulatbn
of values along a computation. It is either the accumulated
summation, as with the energy objectives, or the accumulate
average, as with the mean-payoff objectives. We investigat
the extension of temporal logics with theprefix-accumulation
assertionsSum(v) > ¢ and Avg(v) > ¢, where v is a numeric
variable of the system, ¢ is a constant rational number, and

Sum(v) and Avg(v) denote the accumulated sum and average

of the values ofv from the beginning of the computation up to
the current point of time. We also allow the path-accumulation
assertionsLimInfAvg(v) > ¢ and LimSupAvg(v) > ¢, referring to
the average value along an entire computation.

We study the border of decidability for extensions of variols
temporal logics. In particular, we show that extending the
fragment of CTL that has only the EX, EF, AX, and AG temporal
modalities by prefix-accumulation assertions and extendig LTL
with path-accumulation assertions, result in temporal logcs
whose model-checking problem is decidable. The extendedgics
allow to significantly extend the currently known energy and
mean-payoff objectives. Moreover, the prefix-accumulatio asser-
tions may be refined with “controlled-accumulation”, allowing,
for example, to specify constraints on the average waitingirne

between a request and a grant. On the negative side, we show

that the fragment we point to is, in a sense, the maximal logic
whose extension with prefix-accumulation assertions perrs a
decidable model-checking procedure. Extending a tempordbgic
that has the EG or EU modalities, and in particular CTL and
LTL, makes the problem undecidable.

|. INTRODUCTION

Traditionally, formal verification has focused on Boolea
properties of systems, such as “every request is eventug
granted”. Temporal logics such as LTL and CTL, as well as
automata over infinite objects, have been studied as smecifigl

tion formalisms to express such Boolean properties.

an embedded systerh).

There has recently been a significant effort to study such
guantitative-oriented specification. The approach thatdeen
mostly followed is to consider specific objectives, as mean-
payoff or energy-level, by means of weighted automata [3],
[4], [5], [6]. No attention, however, has been put in ex-
tending temporal logics to provide a general framework for
guantitative-oriented specifications. In this work, weadiuce
and investigate this direction.

When considering quantitative-objectives, one should dis
tinguish between two different aspects. The first is extegdi
the verified system to have numeric variables rather than
Boolean ones. The second, which is the core issue, is exigndi
the specification language to handle accumulative values of
variables along a computation.

To understand the difference between the two issues, con-
sider, for example, a Kripke structure with a numeric vaeab
‘consumption’ that gets a rational value rather than a Baole
one. This alone is of no real interest, as numeric variables
over a bounded domain can be encoded by Boolean variables.
Hence, one can easily express properties like “the consampt
in each state is at most 10” with standard temporal logic.

The main challenge in the quantitative setting is the second
issue, namely the accumulation of values. Here, one may wish
to specify, for example, that the total-consumption, frdra t
beginning of the computation up to the current point of time,
is always positive. Note that accumulation is interestitap a
for systems with only Boolean variables. For example, if the
Boolean variable ‘active’ holds exactly when a communiati
channel is active, one may wish to specify that the activenes
rate, namely the rate of states in which active is valid,isagb
above half. It is not hard to see that properties that involve
accumulation cannot be specified using standard temporal

ics. Indeed, accumulation yields languages that are no
ﬁgerw-regular.

The basic accumulation operators are summation and aver-
ge. One may formalize them by adding to temporal logics
atomic assertions of the form > +/, wherey and~’ are

In the last years we experience a growing need t0 €Xrithmetic expressions that use atoms Ikem(v), Avg(v),
tend specification formalisms with quantitative aspectst th
can express properties such as “the average Suc?ess'ratelb?ﬁerent classes of formalisms with quantitative aspeceseal-timelogic
eventually above half”, “the total energy of a system is gisva and automata [1], as well as logics that suppoobabilistic reasoning [2]. The
positive”, or “the Iong-run average of the costs is below 5contributions me_lde in th_ese areas are'orthogonal to thetltmm aspects
Such titati t f ificati tial at are the subject of this work. Yet, discrete real-timgide that count the

uch quanttative gspec S Or speciiica 'Fm are gssen ra mber of steps turn out to be special cases of this work, astiog steps
systems that work in a resource-constrained environment ¢an be done by controlled-accumulation. (For details, i@ 111-B.)



and ¢, where v is a numeric variable of the system,is based on a reduction to the validity problem of a Presburger
a constant rational number, asaim(v) and Avg(v) denote Arithmetic (PA) sentence. That is, given an EFformula ¢

the accumulated sum and average of the values @fom and a Kripke structuréC with numeric values, we generate
the beginning of the computation up to the current point @ PA sentencd), such thatK satisfiesy if and only if 0
time. For example, basic atomic assertions Suen(v) > ¢ is true. For coping with infinitely many computation paths,
and Avg(v) > ¢, and one can also have expressions likee characterize the possitBegmentsf the Kripke structure.
Sum(v) > 2Sum(u) + 5. A natural question that arises isWe show that there are finitely many segments and that it
which temporal logics, if at all, can be extended, and witbuffices to formulate with PA a “proper computation path over
which type of arithmetic expressions, while still allowifgy a segment”.

a decidable model-checking problem. On the negative side, we show that *ERs, in a sense,

On the positive side, we show that the EF logic (also knowRe maximal extendable logic. Extending a temporal logic
as UB") [7], which is the fragment of CTL with the EF, that has either of the temporal operators EG, EU, ER or
AG, EX, and AX temporal operators, can indeed be extendedy results in a logic whose model-checking problem is
with a rich class of arithmetic expressions (we would folsnal yndecidable. In particular, CTL and LTL cannot be extended.
define it below). We denote the extended logic by"ER  The undecidability result applies already to an extensigh w
simple example of an EFspecification is given below. the atomic assertioSum(v) > 0 or Avg(v) > 0, and holds
Reliable system with energy constrai@bnsider a system with even when restricting attention to systems with only Boolea
a Boolean variable that is true when the system producesariables. The proof proceeds by a reduction from the tgltin
a correct output, and is false when the output is erroneopsoblem of counter machines. An open problem is whether a
The system is reliable if in every computation, the average l@gic with the, less standard, operators EFG and EGF (stgndi
correct output is always at lea8t95. The system also has afor “exists a computation such that eventually-always and
numeric variablev that denotes the energy level, and it musilways-eventually”) can be extended.

not reach a negative value. The required properties can behe logic EF considersprefix accumulation accumu-
specified in EF by: AG(Avg(p) > 0.95 A Sum(v) > 0). lating a value from the beginning of the computation up

Moreover, we show that EF can include a rich family o the current point of time. It significantly enriches the
of arithmetic expressions: in the atomic assertions= 7', cuyrrently known energy-objectives and opens new direstion
both sides can be linear combinations oSem(v), Avg(v), for specifications with average values and timed-transasti
andc, as long as there is no comparison between summatigg path-accumulatiorassertions, in which the accumulation
and average. For example, we can h&uen(u) — Sum(v) > s done along the entire, infinite, computation, referriog t
3 A Avg(u) = 2Avg(v), but cannot havéum(v) > Avg(u). the summation is usually useless, as it need not converge.
Moreover, the atomic assertions can haeatrolled accumu- Researchers have thus considéscounted accumulatiof9],
lation, allowing to control when and how the accumulatioy refer to the limit-average of the accumulated values. We
is done by means of regular expressions. This extensig@h not know of a simple way to express the limit-average
is of special interest, as it allows to accumulate the time prefix-accumulation, and, at any rate, extending LTL with
ticks of definable transactions. For example, one may Specﬁ%,efix accumulation results in a logic whose model-checking
constraints on the average waiting time between a requést oplem is undecidable. Other known extensions of LTL
agrant. _ . ~ also cannot capture limit-average (mean-payoff) objestiv

The decidability of the logic EF has been a nice surpriseye therefore study also the extension of temporal logics
for us. Due to the value accumulation, the logic*ERas ith the path-accumulation assertiohsminfAvg(v) > ¢
“memoryful semantics”. When we unwind the Kripke strucyng LimSupAvg(v) > ¢, for a numeric variablev and a
ture to an infinite tree, the accumulation of values depengsnstant number, referring to long-run average of (the
on the path taken from the beginning of the computation (”ﬁﬁ’fimum/suprimum ofv along an entire computation.

root of the tree) and the current state. Accordingly, défer s additional good news we show that LTL can be extended

A
occurrences of the same state may not agree on the sef, of o path-accumulation assertiobsninfAvg(v) > ¢ and

atomic assertions they satisfy, and hence may also dlsag{?nqSupAvg(v) > ¢, denoted LTL™, while allowing for a

on the satisfaction of f(_)rmulas. Standard temporal IOQ_Mh ecidable model checking. This is indeed a nice surprisa, as
a memoryless semantics, and model-checking algorithms

. _ X all fragment of LTL extended with the prefix-accumulation
them heavily depends on this fact. Handling of memoryf.tgssertionAvg(v) > ¢ is undecidable. The extended logic

Iog|ps s much more challenging. For the pon-acpumulatl\{_q-Llim significantly enriches the currently known mean-payoff
setting, model checking of memoryful logics is possiblate objectives. An example for a specification in LTLis given
to the fact that different histories can be partitioned fimidgely below

many regular languages [8]. In our accumulative settingreh
is no bound on the accumulative values and no finite partitiduong run happines€onsider a system with Boolean variables
is possible. Wish and ComesTrue, and numeric variablegncome and

For that reason, the model-checking procedure is veRBleasure. A system is said to bbappyif every wish eventu-
different from standard model-checking procedures, and afly comes true or the long run average of both the income and



the pleasure are positive. The required properties candxe sg-or a Buchi fairness condition, we have thatC S, and a
ified by the LTL™ formula: G( Wish — F(ComesTrue)) vV computationr is fair if inf(r) N a # 0.

LimInfAvg(Income) > 0 A LimInfAvg(Pleasure) > 0. We denote the labeling (value) of a Boolean varighbknd
Related work: Weighted automata over semirings (i.e.pf a numeric variablev in a states by [p]s € {T,F} and
finite automata in which transitions are associated witlghvisi  [v]; € Q, respectively. We often talk about Kripke structures,

taken from a semiring) have been used to define cost func¢tiomseaning quantitative ones.

called formal power series for finite words [10], [11] and Extended temporal logicsWe consider two kinds of
series for infinite words [12], [13], [14]. In [4], new classe assertions on accumulative values, for which the accuioulat
of cost functions were studied using operations over ratioris done either along a prefix of a computation or on the entire,
numbers that do not form a semiring. In [5], deterministimfinite, computation. Lel” be a set of numeric variables.
weighted automata with mean-payoff objectives were furthe , A prefix-accumulation assertion ovéf is of the form
studied, providing closure under Boolean operations. Béve v >+, wherey and~’ are linear arithmetic expressions

other works have considered quantitative generalizatmins defined over the atoms € Q, and Sum(v) or Avg(v)
Igr_lguage_s, over finite words [15], over tree_s [16], or using for v € V. For exampleSum(v) > 4, Avg(v) > 2% and
finite lattices [17], [18]. The work of [19] gives an exten-  Sum(v) > 2Sum(u)+5. A single atomic assertion cannot

sion of MSO to capture weighted mean-payoff automata. All  have both Sum() and Avg(), while different atomic-
these works consider weighted automata and their expeessiv  agssertions in the same formula can.

power for quantitative specification languages. The extens , A path-accumulation assertion ovér is of the form
of temporal logic with accumulation assertions to express LimInfAvg(v) > ¢ or LimSupAvg(v) > ¢, for v € V
quantitative properties of systems has not been considered andc e Q.

before. Note that prefix-accumulation assertions allow to compare

The model of turn-based games with mean-payoff angyyeen two different variables, while path-accumulatisn
energy objectives have been deeply studied in literatud§ [25ertions do not.

[21], [22], [23]. These works focus on the extension of e§erg \ye shall investigate the extension of both linear-time and
and mean-payoff objectives from the Kripke structure medel 4 ching-time logics with prefix-accumulation assericand

to game models. Our work, on the other hand, remains With{gs extension of LTL with path-accumulation assertions. Fo
(quantitative) Kripke structure, while extending the aitiee ¢y ample, the logic CTL extended with prefix-accumulation
by means of temporal logic. assertions is denoted C¥land has the following syntax.
Let P and V' be finite sets of Boolean variables (atomic

) ) , L , propositions) and numeric variables, respectively.
In this section we define quantitative Kripke structures  ou . . . .
o« A CTL* formula isp € P, a prefix-accumulation as-

model for systems with numeric variables, and introduce tem .

poral logics that can specify quantitative aspects of gtedivie sertion overV, ﬁ‘é’ P12, EXo, EFp, EGp, or

Kripke structures. Assertions that relate to the currehtevaf solEU_(pQ’ _for CTL" formulase, o1, andps. _

a numeric variable, as > 7, are of no interest as they can be Of Special interest would be the fragment of CTL with

expressed in standard, Boolean, temporal logic, by reigrrith® EF and EX temporal operators, in addition to thend

to the binary representation of We are interested, instead,\ Boolean operators, known in the literature as the EF or

in assertions lik&um(v) > 7, which refer to the accumulatedUB ™ l0gic [7]. We shall denote its extension with prefix-

value of v from the beginning of the computation up to théccumulation assertions by EF _ _

current time position. Such assertions are no longeegular. The logic LTL extended with path-gccumulatlon as.sert|.ons

Quantitative Kripke structure:ln a standard, Boolean, ' denoted LTL, and has the following syntax, again with

Kripke structure, the variables (atomic propositions) ase €SPect to set$ and V.

signed a Boolean value. Quantitative Kripke structuresshav « An LTL'™ formula is p € P, a path-accumulation

both Boolean and numeric variables, where the latter are assertion overV, —p, @1 A 2, Xp, Fp, Gy and

assigned rational numbers. Formally,qaantitative Kripke ©1U g, for formulase, p1 and ps.

Structureis a tuple = (P, V, S, s;n, R, L), with a finite set ~ The semantics of the extended logics is defined with respect

of Boolean variabled, a finite set of numeric variablég, a to the computation tree of a quantitative Kripke structire:

finite set of states, an initial states;,, € S, a total transition the path quantifiers and the temporal operators, the sersanti

relationR C S x S and a labeling functiod, : S — 2 x QY. is as in standard temporal logic. Thus, E stands for “exists
A computationof K is an infinite sequence of statesa computation”, A for “all computations”, X for “next’, F

T = S0,81,... such thatsy = s;, and (s;,s;+1) € R for “eventually”, G for “always”, and U for “until”. Other

for every i > 0. We denote by infr) the of states that standard temporal operators that will be mentioned in the

the 7 visits infinitely often, that is infr) = {s € S | sequel are R for “release” and W for “weak until’. For

for infinitely manyi € IN, we have thatr; = s}. the accumulation assertions, the semantics is defined below
A quantitative Kripke structure may also havefarness Note that, due to the value accumulation, the extendeddogic

condition «,, added as the last element in its definition tupldave “memoryful semantics”, as opposed to the memoryless

II. THE SETTINGS



semantics of standard CTL and LTL. This is why we define the K E

semantic with respect to the computation tree and not dijrect
with respect to the Kripke structure. We thus start with the
definition of trees and computation trees.

Given a finite setD of directions a D-treeis a setl’ C D*
such that ifx - d € T wherex € D* andd € D, then also ‘ T
x € T. The elements of”" are callednodes and the empty i
word ¢ is theroot of T'. The prefix relation induces a partial
order< between nodes df. Thus, for two nodes andy, we

say thatr < y iff there is somez € D* such thaty = x - z.
For everyz € T, the nodes: - d, for d € D, are thesuccessors v=-5

of z. A node is deaf if it has no successors. pathof T' is a SAL\',Z(S) Sum(v) = 4
minimal setr C T such that € « and for everyy € T, either Avg(v) =2
y is a leaf or there exists a uniques D such thaty - d € 7. »
For a setZ, a Z-labeled D-tree is a pair(T, ) whereT is a s 3
D-tree andr : T — Z maps each node d&f to an element in A‘\',g((:));%l
Z.
A Kripke structurefC induces acomputation tregTc, 7xc) E
that corresponds to the computations /6f Formally (see
an example in Figure 1), for a Kripke structuré = Fig. 1. A quantitative Kripke structur& and its computation-tre@’.

(P,V,S, sin, R, L), we have that'Ti,7x) is a (2F x QV)-
labeledS-tree, wherestate(z:) denotes the rightmost state in
a nodez of T andx(x) = L(state(z)). I1l. TEMPORAL LOGICS WITHPREFIX ACCUMULATION

We denote the labeling (value) of a Boolean varighknd
of a numeric variablev in a nodez by [p]. € {T,F} and
[v]= € Q, respectively.

We define the prefix-accumulation values of a numer
variablev at a noder of the computation tree as follows.

In this section we consider temporal logics extended by
prefix-accumulation assertions. The central question igtwh
of the standard temporal logics, if at all, can be extendeitewh
|(i. . . .
still allowing for a decidable model-checking.

One may notice that prefix-accumulation takes us from the

[Sum(v)]. = Z[[v]]y “comfort zone” of finite state systems into the “hazardous”
y<z zone of infinite state systems. Indeed, it is closely related
[Sum(v)]s counter machines and makes our paradigm especially close to

[Avg(v)]. = BEEEE model-checking Petri-nets. Yet, while model checking iPetr

i i nets is undecidable for all relevant temporal logics [24¢ w
The Sum and Avg functions can also be defined for agpqy that it is decidable for a quantitative Kripke struetur
Boolean variable, by viewing it as a numeric variable witQng 4 specification in the logic EFIt also turns out that, in

F=0 a|_'1d_T =1 o ] a sense, the logic EF is the maximal one that can be extended
The limit-average value along an infinite computation patfj;i prefix-accumulation.

is intuitively the limit of the average values of its prefixes In Section IlI-A, we show the decidability of the model-
However, thes_,e average v_alues n_e(_ed_ hot converge, thul’%h@cking problem for the logic BF In Section 1lI-B, we
standar_d solution is to conS|de_r their infimum and SUPFEMURY ther extend EE with assertions on controlled accumulation,
We define the path-accumulation values of a numeric varialyg; o keeping the above decidability. These assertiormall
v along a pathr = a1,23,... of the computation tree as¢,, example, to specify constraints on the average waiting t

follows. between a request and a grant. On the other hand, we show
o [LiminfAvg(v)]x = lim inf{[Avg(v)]., | i > n} in Section I1I-C that adding prefix-accumulation assewion
o [LimSupAvg(v)]. = ILm sup{[Avg(v)].,; | i > n} to a temporal logic with any of the other standard temporal
For example, for thencoor?nputatiom — (s155)” of the oOPperators (that is, EG, EU, ER, or EW) makes the model-

Kripke structure in Figure 1 we have t

héttimInfAvg (v)] checking problem undecidable. In particular, extendind-CT
is the limit of inf{23, 52,1 =4 =1 -6 =3 -8 1 _ _

1 and LTL makes them undecidable.
12 293 47 59 6 77 8" !

which is also[LimSupAvg(v)] . Note that the values of path- ON€ may first observe that all the prefix—acc;u?glation
accumulation assertions are indifferent to finite prefixes o aSSertions can be expressed by $nen(v) > ¢ assertiorr:

Thus, for all suffixesr’ of w, we have thafLimInfAvg(v)]~ = |Lemma 1. Consider a Kripke structuré and a specification

[LimInfAvg(v)], and similarly forLimInfAvg. Accordingly, ., in a temporal logic with prefix-accumulation assertionsslt
the nesting of path-accumulation assertions in temporat-op

) i .
ators does not add to the expressive power of 'ETWe still 2The Sum > c assertion can be switched to &vg > 0 assertion, by
allow this nesting, as it enables more succinct formulas. setting an initial value of: to v.



possible to obtain fronfC and ¢ a structureX’ and a specifi- The PA-formulation, in a glanceFor convenience, we
cationy’ such that’ differs fromK only in new numeric vari- shall view the Kripke structurf& as having the numeric values
ables,y’ differs fromyp only in some of the prefix-accumulatioron the edges (transitions), rather than in the states. Thesed

assertions, all the prefix-accumulation assertionsoinare of are namedy, es, ..., e,, and the value of a variable on an
the formSum(v) > ¢, and K = ¢ iff K' |= ¢/. edgee; is denotedy;.
We use the PA-variabless,zo,...,2z, Iin correlation

Proof: Let w andv be numeric variables anda rational

constant., We obtaiit’ andy’ as follows. with the edgeses,es,...,e,. Intuitively, a finite path=

of K induces an assignment to the PA-variables, describ-
o For an expressiorbum(v) £+ Sum(u), we add a new ing the number of times that each edge is repeated in

variable v to K’ that is assigned the valup’]s = «. Using these variables, we can translate, for example,

([v]s £ [u]s) in each states of the Kripke structure. We the EF° formula EF(Sum(v) > 3) to the PA-formula

then replac&um(v)+Sum(u) by Sum(v’). Ananalogous 3z, s, ..., z,. > i, vir; > 3. This follows the approach of

treatment is given tdvg(v) + Avg(u). [26], where linear programming is used rather than Pressurg
o We replace af\vg(v) > Avg(u) assertion bysum(v) >  arithmetic.

Sum(u). For handling nested quantifications, there would be a new

o ForaSum(v) > Sum(u) assertion, we add a new variableset of PA-variables for every temporal quantifier, while the
v’ to K’ that is assigned the valje’]; = ([v]s — [u]s) PA-variables of the upper levels are added to the summation.
in each states of the Kripke structure. We then replaceFor example EF(Sum(v) > 3 A ~EF(Sum(u) = 0)) would
Sum(v) > Sum(u) by Sum(v’) > 0. be translated to the PA-formuir, za, ..., .. >, viz; >

« For anAvg(v) > c assertion, we add a new variable3 A —(Jy1, ya, ..., yn. Doy wiz; + i) = 0).

v’ to K’ that is assigned the valup']; = ([v]s — c) The problem is that a valid assignment of the PA-variables
in each states of the Kripke structure. We then replacedoes not guarantee a valid computation of the Kripke strectu
Avg(v) > ¢ by Sum(v’) > 0. — the edge repetition need not match a connected path.

It is easy to see that, in all nodes of the computation-tree,FOr handling path-connectivity, we define a “segment” of
the original assertions are valid iff the new ones are. Megeo the Kripke structure to be a triple, of a starting-state,iegd
since the computation-treeskifandk’ are identical, up to the State, and a set of edges connecting between them. For every

new variables, the assertion-equivalence extends to farmus€gments of K, we formalize in PA the assertion that “the
equivalence in all temporal logics. m ¢€dge repetition corresponds to a connected path over the

segmentx”. Namely, we assert that all the edges of the
- segment are used, and no edge but them, as well as that the
A. Decidability . . .

number of times a state is entered is equal to the number of

We show the decidability of the model-checking problem fdimes it is left, with the exception of the starting and engin

the logic EF. Given a Kripke structure and a specification, wetates. The latter assertion is an adjustment of Kirchioff’
shall formulate their model-checking problem by a Presburgcircuit laws.
arithmetic (PA) sentence, such that the sentence is trubdff We then change, top to bottom, eveBF or EX sub-
Kripke structure satisfies the specification. formula into a disjunction of identical subformulas, each i

Presburger Arithmeticin 1929, Mojzesz Presburger for-conjunction with a specific segment. The starting state ef th
malized the first order theory of the natural numbers witfegments in an inner formula is taken to be the ending state
addition, and showed that it is consistent, complete afd the segment in the upper-level formula.
decidable [25]. In the rest of this section, we formalize this PA-formulatio

A Presburger arithmetic (PA) formula is a first order formul@nd prove its correctness.

with the constants and1 and the binary functior-. The PA Moving the numeric values to the edgdsis a common
theory has the following axioms: practice to switch between the values of the states and the

edges, for example in the process of translating a Kripke
structure to an automaton. For convenience, we move the
numeric variables to the edges, while keeping the Boolean

o V. 2(0=2+1)
o Va. (z4+1=y+1)—>z=y

c Vz.z+0=uz variables in the states.

« Yoy (@ty)Hl=a+(y+1) The translation (see Figure 2) adds a new stajeas the
In addition, the PA theory has the induction scheme: Foryevatew initial state, and a transition frosg to the original initial
PA-formulad(z), we have that if(0) AVz(0(z) — 6(x+1)), state. Every numeric variable in a states is moved to all
thenVvy.0(y) the incoming edges of. The edges are named, es, . .., ey,

The syntax of PA formulas can be extended to contaand the value of a variable on an edge:; is denotedv;.
inequality notions €, >, <, >) and rational coefficients. For Given a Kripke structurelC and a specificationp, we
example, having the statementVy %a: -2y < % The latter translate/C to Shift(XC) as above, and change the specification
can be translated to the sentefo&/y3z —(z = 0)A3z+2z = ¢ to Shift(y), referring to the next state. In the case of a linear-
8y + 2, maintaining the original truth value. time specificationShift(¢) = X¢ and with a branching-time



K Definition 4 (PA-formulation of a path) Consider a Kripke
, structureC with statesS and edges = {ej,es,...,e,}. We
denote the set of indices of the incoming edges to a stat®
by In(s) and of the outgoing edges I8yut(s). For a segment
k = {a,b,C) of K, we define its PA-formulay),, to be the
conjunction of the following formulas, over the PA-variabl
Shlft(K:) vz =1 L1,L2y..., Ty
o For everyi such thate; € C, the formulax; > 1.
« For everyj such thate; € E'\ C, the formulaz; = 0.
o If a =0 (i.e. a cycle) then:
— Foreverystatess € S: > z, = > oz
i€ln(s) j€Out(s)
o If a #b (i.e. not a cycle) then:
— Foreveryse S\ {a,b}: > x;= > =z
specificationShift(y) may beAX ¢ or EX ¢ (sincesy has a i€ln(s) J€Out(s)
single successor, path quantification is not important). — Theformula > 2 =( > ;) +1L

Fig. 2. The Kripke structurdéC and its equivalent structurghift(K), having
the numeric values on the edges.

1€Out(a) j€n(a)
Proposition 2. Consider a Kripke structuré& and a temporal - The formula_ Y. T = (_ > m)+ 1
logic specificationy. Thenk |= o iff  Shift(K) = Shift(y). i€ln(®) Je0ut(b)

. _ For example, the PA-formula of the segment
Segmentsin our PA-formulation of the model-checking =~ _ (50, 55 p{el es.e51) of the structure Shift(K) gof

problem, the PA-variables denote the number of times t Hgbure 2 isih, =

each edge of the Kripke structure is repeated in a satisfyin x> 1 /\K z9>1 A 23>1 A 24=0 (edges)

path. Yet, an arbitrary edge-repetition need not correggon 1 J:x4 I n n (internal states)

a connected path. For formalizing this constraint in PA, we, 21=0+41 A Z3+24 =9+ 25— 1 (start and end)

define the “segments” of a Kripke structure. A segment is |t is easy to see that the edge repetition-set;zs, . . ., z,,

a triple, of a starting-state, ending state, and a set of £dgg a connected path over a segmersatisfies the PA-formula

connecting between them. Ja1, T2, ..., 0. .. Furthermore, the opposite is also true,
Formally, for a patfp (not necessarily simple) in a directedas shown below. The reason is that Kirchhoff's circuit laws

graph, we denote bffdges(p) the set of edges that appear iyuarantee a set of proper cycles, while the requirement to

D- visit all the segment-edges guarantees that these cyctes ca

Definition 3. Given a Kripke structureC with statesS and P€ connected.

edgesE, we define asegmentof K to be a triple (a,b,C) |emma 5. Consider a segment = (a,b,C) of a Kripke
with a starting statez € S, an ending staté € .S, and a set structure K with statesS and edgest = {eq,ea, ..., e}
of edgesC C E, such that there is a patp from a to b With  Then, there is a patlp from a to b with Edges(p) = C
Edges(p) = C. Note thatC' may be the empty set. iff the PA-formula, 3z, zs, ..., z,. ¥,, as defined above, is

Since every edge appears at most once in every segm@ﬁ{i,d- Moreover, every solutiom,, zy, ..., z, of the formula
a Kripke structure has finitely many segments. For exampR@mesponds to the number of times that each edgeés
the structuréShift(K) of Figure 2 has the following segmentsf&Peated in a patlp, and vice versa.

k1 = (s0,50,0) Proof: Given a pathp from a to b over C, it is easy to
re = (s0,s1,{e1}) Ry = (s0,s1,{€1,€2,€4})  gee that the edge repetitions pfprovide a solution to the
ks = (80,51, {e1,e2,e3,e4}) K5 = (0,52, {e1,e2}) PA-formula.
K6 = (S0, 52, {e1, €2, €3}) R7 = (80,82, {e1,€2,¢3,e4})  Ag for the other direction, we will iteratively generate a
ks = (s1,51,0) Ry = (81,51, {e2, ea}) pathp from the formula solution:,, zo, ..., z,. We call the
K10 = (51,51, {€2, €3, €4}) K11 = (51,52, {ea}) PA-variablez; the “counter of the edge;”, and decrease it
K12 = (51,52,{€2,€3}) r13 = (s1,52,{€2,€3,€4})  py 1 once we use;.
K4 = (52,51, {ea}) s = (52,51, (€3, €a}) « Step | - the skeleton path
R16 = <52751, {62,63764}> R17 = <52752,@> '
K18 = (82, 52, {6_3}> K19 = <52752,_{€2,63,Cf4}> 1) Staft fr(_)m the state.
PA-formulation of a connected pattEquipped with the 2) Arbitrarily choose an edge from the current state,
notion of a segment, we may formalize in PA the assertion whose counter; is not0. Decreaser; by one.
that “an edge repetition-set corresponds to a connectdd pat 3) Continue with step (2) above with respect to the
by a disjunction of the assertions “an edge repetition-set ending state ot;, until reaching a state for which
corresponds to a connected path on a segra&ntver all all the outgoing edges have zeroed counters.
relevant segments. For each segment, the corresponding PA- Step Il - the added cycles.
formula will be an adjustment of Kirchhoff’s circuit laws. If there are still positive counters:



1) Choose a statein p that has an outgoing edge withTheorem 6. Given a quantitative Kripke structur€ and a
a positive counter. specificationy in EF*, it is decidable to check whethdg

2) Continue froms, as in step I.2. satisfiesp.

3) The zeroed-counter state, which we stop on, must
be s. Add this cycle as a loop in the first occurrenc
of sin p.

4) Repeat step Il until all edge-counters are zeroed.

We should prove the following claims:

Proof: We prove that the PA-formula
q’rans(Shift(go)7so7(Z)) is valid iff Shift(K) E Shift(y).

By Proposition 2, the latter holds if | . The proof
proceeds by an induction on the nesting levebbift(y).

For a single temporal operator and a single segment, the

« Step | ends irb. translation correctness follows from Lemma 5. By the disjun

« Step Il.1 is always possible when there are positifon on all the segments that start in the designated state, w
counters. get the correctness with respect to the whole Kripke strectu

« Step Il always produces cycles. As for the induction step, setting the starting state of the

The correctness of the first and third claims follows frormner segment to be the ending state of the upper level ensure
the In-Out edge counting. As for the second claim,debe a correct path, while the addition of the PA-variables of the
the source state of an edge with a positive counter. Sihi® upper level to the summation in the inner level ensures agsrop
reachable fromu along edges in the segment-ed@ésthere calculation of the accumulated variable values. ]
is some corresponding pafh = a — s} — s, — .../, all Note that model checking an EFormula is also decidable
of whose edges are i@i. Let e be the first edge ip’ with a with respect to a quantitative Kripke structure with a fasa
positive counter. We will chooseto be the source-state ef condition. The reason is that a fairness condition onlytesla

Itis left to show thats € p. If s = a we are done. Otherwise,to computation suffixes, while an EF formula only relates to
since all the edges qf must be used at least once, and theomputation prefixes. The single intersection-point betwe
edge befores has a zeroed counter, we know that it has beehe two is the liveness-property of the prefix states. Indeed
used, implying that belongs to the generated path B consider a Kripke structuré’ with statesS and a fairness

Translating temporal logic into Presburger arithmetic: conditiona. Let D C S be the “dead-end states” &f, from
We can now describe the formulation of the model-checkivghich no computation ofC satisfiesca. Consider the unfair
problem forXC and ¢ by means of a PA-formula. We do soKripke structure/C’ over the restriction ofC to S\ D. Then,
by defining a recursive procedurans(&, s, Y), that gets as for an EF formula of the formEF¢ (or EX¢), one can see
input an EF formula¢, a states of Shift(K), and a finite set that K has a fair computation that satisfigg"¢ iff K’ has a
Y of n-tuples of PA-variables, and returns a PA formula that isomputation that satisfieB F'€.
valid iff the states of Shift(K) satisfiest under the assumption Complexity: The complexity of the construction is
that s has been reached along a path describedVbywe roughly quad-exponential in the size of the Kripke struetur
formalize this below). Accordingly, model checking @fin  The best known algorithm for solving a PA formula is triple-
K is reduced to checking the validity @fans(Shift(y), so,?). exponential, while our PA formula might be exponential ia th

Consider a sety” of n-tuples of PA-variables, say" = size of the Kripke structure. The length of the PA formula is
{(z1,...,ak), ..., (k... 2k)}. We write}" Y; as a shortcut O(27*?+m) for a Kripke structure withn states and an BF
for Zle z]. In the procedure, we use the symhado denote formula of lengthm and nesting-levell of EF operators.

a segment obhift(K), and, to denote its PA-formulation, A lower bound for the required complexity is an open
as in Definition 4. All the PA-quantifications use new PAproblem. Specifically, one may seek an algorithm that uses

variables. a weak version of Presburger arithmetic, as integer or finea
The formula Trans(¢,s,Y") is defined according to the programming, and try to avoid the brute-force segmentation
structure of¢ as follows. of the Kripke structure.

o Trans(—&,s,Y) = —Trans(,s,Y).

e Trans(&y A€o, s,Y) = Trans(€1,5,Y) A Trans(&s, s, ). B- Controlled Accumulation
o Trans(p,s,Y) = [p]s, for an atomic proposition. One may wish to have some control on when and how the
e Trans(EF¢,s,Y) = dz1,...,z,. Vs A accumulation is done, in order, for example, to make agsesti
Trans(€, b, Y U { ) r=(5,b,C) on the average waiting time between a request and a grant.
ran Tiy...,Tp)). . . .
) o For the latter, we need the accumulative-sum of the timestic
o Trans(EXE,s,Y) = Trans(EFE, s, Y)A S o = 1.3

between the requests and their corresponding grants,edivid

by the number of such request-grant transactions.

o Viewing the period between a request and a grant as a
We can now uselrans for the decidability of the model- «ransaction”, one may wish to further generalize the accu-

checking problem. mulation with respect to transactions. For example, hagdli

o _ discontinuous transactions, speaking about their average

3The disjunction in the formuldlrans(EF¢, s,Y) may be restricted to d . diff . | heir diff

segments with a single edge, or alternatively be replac#dastraightforward and setting diiferent importance-values to their différen-

disjunction on the outgoing edges ef currences.

e Trans(Sum(v) > ¢,s,Y) =30 (v;>.Y;) > ¢, where
v; is the value of the Kripke-variable on the edges;.



All that, and more, can be done by adding the followan assertion of the forrSum(v) > 0, as follows. Consider
ing controlled accumulationatomic-assertion to the logic: an assertiorcAvg(u, p,v,q) > ¢. We define a new numeric
cAvg(u,r1,v,72) > ¢, for a numeric variable:, a positive variablev’ with the following value (for all states):
numeric variablev, regular expressions; andry over 27,
and a constant. The value of a controlled-average at a node
z of the computation tree is defined as follows (we uég) [v']s =
to indicate that the prefiy is a member in the language of
the regular expressior).

0 if [p]s =F and[¢]s =F
—cv if [p]s =F and[q]s —T
u if [p]s =T and[q]s =
u—cv if [p]s =Tand[g¢]s =

Z(y<m | n(y))[[“]]y Prqposition 7. qu!sider a Kr.ipke gtructur& with a numeri(_:
D o, variable u, a positive numeric variable aqd Boplean vari-
(y<z | r2(y)) L7y ablesp andgq. Let K’ be a Kripke structure identical t&C, up
Intuitively, 7, indicates whether the current point of timego having a new numeric variable/, defined as above, for a
is relevant to the transaction, according to which we sum-gpnstant numbet. Then, for every node of the computation
the costsv, while r, indicates a new transaction-occurrencdtee of ', we have thatAvg(u,p, v, q) > c¢ iff Sum(v’) > 0.
The value ofu indicates the importance of the transaction-
occurrence, denoting its influence on the averaging.

[cAvg(u, 1, v,72)]x =

Proof: We have that:

. ) cAvg(u,r1,v,72)]s > ¢ iff
Note that the controlled average is undefined before the- " il ,
first true-valuation ofr,. Indeed, there is no meaning to a =, -, | (4, I zc iff
transaction-average before the first transaction-ocooere > y<e | [[p]]y)[[u]]y = (X (y<a | [q]]y)[[v]]y) iff
Controlled-average can obviously express standard summg: (w<z ‘ i1 [y — (y<‘m_| 11, clvly >0 iff
tion and averaging. Indeed, for all nodeswe have that Syt >0 ‘ - ! ‘ iff
[Sum(uw)], = [cAvg(w,T,1,"“First computation step]. [[S“m( e 2 0. -
[Avg(u)]. = [cAvg(u,T,1,T)].

Undecidability

For example, the average-waiting time between a request
(denotedp) and a grant (denoteg) over an alphabet can We show that the model-checking problem for extended
be defined by:cAvg(1,71,1,7), wherer; = X*p(X \ ¢)* logics that have the temporal operators EG or EU (or their
describes all prefixes with a request that is not yet grantetyjals, AF or AR) is undecidable. This implies the undecid-
and . = (¢ + ¥*¢)(X \ p)*p) describes all prefixes in ability of the extension of all temporal logics that include
which a request that needs a grant has been issued. Tigas be translated to these operators. In particular, theemod
cAvg(1l,71,1,73) is the sum of the waiting durations dividedchecking problems for the extensions of CTL* [27], LTL [28],
by the number of requests. RTL [29], CTL [30], STL [31], UB [32], and EG [32] are all

Decidability: We show that adding controlled-averagéndecidable.

assertions to the logic EFpreserves the decidability of the The proof is by a reduction from the halting problem of
model-checking problem. counter machines. Given a counter machivie we construct

We first reduce the problem to model checking assertioad<ripke structureC and a specificatiop such thatC satisfies
of the form cAvg(u, p1,v,p2) > ¢, for Boolean variablep, ¢« iff M halts. The proof goes along similar lines to those
and p,. The semantics is the expected one: the values @$ed for proving the undecidability of model-checking Petr
u and v are taken into an account only in states in whichets [24].
p1 and p, are valid, respectively. In order to talk about  The intuitive explanationA quantitative Kripke structure
p1 and p, rather thanr; and r,, we refer to the product has the flavor of a counter machine, in the sense that the
K x A1 x As of the Kripke structuréC and the deterministic states correspond to the counter machine command-lines and
finite automatad; and .4, for r; andr,, in whichp; andp, the accumulated values to the counters. With two numeric
are true in the accepting states df and .A,, respectively. variables, it is possible to mimic two counters. The crucial
Note that since4; and A, are deterministic, then for everydifference is that a counter machine has a conditional-jump
nodex in the computation tree of, there are unique statescommand, in which it can check the counter values and branch
of A; and A, that correspond tas, which we denote by accordingly. In contrast, the transitions of a Kripke stuue
A (z) and As(x), respectively. Now, it is easy to see thaare not guarded by the accumulated values.
[cAvg(u,r1,v,72)]2, for a nodex in the computation tree  Equipped with a suitable specification language, we can
of K is equal to [cAvg(u,p1,v,p2)] (2.4, (2),4:(2)) IN the address this difference as follows. The Kripke structuresus
computation tree ofC x A; x A,. Accordingly, it is enough its nondeterminism and has two transitions from each state
to show the decidability of controlled-accumulation ases associated with a conditional jump. These transitions can b
that use Boolean variables instead of regular expressions. taken regardless of the accumulated values. The speaficati

Now, a controlled-average assertion with Boolean var@blBowever, would limit attention to computations of the Kripk
p and ¢, instead of regular expressions, can be reduced swucture in which transitions are taken properly. As wewsho



this can be done using th& (Always) or U (Until) temporal
operators. Below we describe the reduction in detail. @ e
/
Counter machinesAn n-counter machine is a sequence il
of uniquely-labeled commands, involving counters. The
counters are initialized to non-negative integers, or \@tui
lently, all are initialized to zero and their desired initialue

is set by the first machine commands. There are five command
types, as demonstrated in Example 8. g
Example 8. A machine with two countersy and y. The
machine adds the value afto y and nullifiesz.
ly. if x =0 then goto 15 else goto 1,
lo. xi=x—1
l3. y=y+1

ly. goto 1y ‘
l5. halt @

We refer to commands of the form
if x = 0 then goto 15 else goto 1, as x-jumps. We Fig. 3.  The Kripke structure corresponding to the counteichire of
assume that the machine never reaches a line of the fdrigmPle &
x :=x — 1 when the counter: is zero. Since we can add

a guarding z-jump before reducing the value aof, the [ul,, = 1 il =x:i=x+1;
assumption does not lose generality. [ul, = —1 if L=x=x—1;
The reduction: Given a two-counter machind/, we [v], = 1 it lLi=y:=y+1
construct a Kripke structur€ and a specificatiog, such that [o]s, = -1 !f L; =y=y—- 5
K satisfiesy iff M does not halt. The values of the Kripke [z:]¢; = T if liisanz jump
structure variables are frorf0, 1, —1} and the specification [zp]sy = T !f li Is ana jump,
only uses the EG modality. The specification may either eelat [yl =T it I is ay jump;
to the accumulative sum or to the accumulative averag€of yplsy = T it I isayjump
variables. An illustration of the reduction is given in Figi8, [halt]s, = T if [; =halt.
with respect to the counter machine of Example 8. Consider the following formulas.

For a two-counter machine\ with n lines and the ¥ Proper
countersz and y, we define the Kripke structurdl =
(P,V, S, sin, R, L) as follows.

= (x; — Sum(u) = 0) A (x, — Sum(u) # 0) A
(y> = Sum(v) = 0) A (yp — Sum(v) # 0).
o = EG®Wproper A—halt).

o P ={halt,z.,zp,y.,yp}. The latter variables are used ¢ = Uproper EU halt.

for denoting whether a counter, for exampleshould be o ) ] )
zero (), or positive (:,), in a proper computation. Note that the specification can be equivalently defined using

« V = {u,v}, corresponding to the: and y counters of Avg() instead ofSum().
M, respectively. o, _ N ] Lemma 9. Given a counter maching/, let K, ¢, andy’ as
« S={si|lie M}U{sj si | li is a conditional jump.  gefined above. Thenyt does not halt iffC = ¢ iff K £ .

e S;n = S1.

o R = {(sisp), (si87), (555 85), (si sm) | Proof: The counter machiné is deterministic, having
l; = if x =0 then goto 1 else goto 1,} @ single run. A computation o simply follows the run

U {(si,sit1) |Lie{x=x+1,x:=x—1, of M, except for the conditional jumps, in which it has
yi=y+1,y:=y—1}} nondeterminism. It may either follow the run @# (that is,
U {(si,s;) | li = goto 15} in statess; of anx jump, branch tos; or s/ according to the

U {(si,si) | li = halt}. value ofz) or violate it (that is, branch not according to the

Thus, the transitions follow the control of1, where value ofz). Note that all the computations & violate the
each of the jumps in a conditional jump commahd run of M, except for exactly one computatienthat follows
is divided into two transitions, visiting the intermediatét. Hence, all computations df, except forr, do not satisfy
statess; (in case the jump is according to the case, while r satisfiesy iff M does not halt. Alsoy satisfies,’

x = 0) or s/ (in case the jump is according to the cas#éf M halts. [ |
x % 0). Since theG operator can be expressed by tHé (Weak
o L: All values areF or 0, except for everyi < i < n: Until) operator, and similarly fot/ and R (Release), Lemma 9



IV. LTL wWITH PATH ACCUMULATIONS

In this section, we show the decidability of model check-
ing a quantitative Kripke structure and a specification give
by an LTI™ formula (an LTL formula extended by path-
accumulation assertions, as defined in Section II). An examp
of such an extended formula is:

FG(q) — ((LimSupAvg(u) = 5) V Gp A LimInfAvg(v) > 4).

-p, q
Tz

Given an LTE™ formula, we shall consider its negation
o = ), and check whether the given Kripke structétehas
a computation that satisfies We do it as follows:

o Translatingy to ¢’ = 1V V... Vep,, such that each;
is of the formy A&, wherey is a Boolean combination of
limit-average assertions agds a standard LTL formula.
o For each disjuncty A &, checking whetherlC has a
computation that satisfiesA y. We do this by translating
£ to a nondeterministic Biichi automaton (NB\M) [33]
and checking whether the produkt x A, which is a
quantitative Kripke structure with a fairness condition,
Fig. 4. The Boolean Kripke structure corresponding to thenter machine has a fair computation that satisfies the limit-average
of Example 8. formula .

Below we describe the model-checking procedure in detalil

implies undecidability also for th&W and ER modalities. and prove its correctness.

Using negation, we get undecidability also for the extemsib Detaching the limit-average assertionsConsider an
logics with theAF, AR, AR, and AW modalities. It follows LTL™™ formula, with » limit-average assertions . .., 0,.
that the decidability result we have seen in Section IlI-Kor b; € {T,F}, we useg(bi,...,b,) to denote the LTL
for a logic with the modalitesEF and EX is maximal. formula obtained formp by replacing all occurrences of the
We conclude that extending all the standard temporal lpgi@ssertiord; by the truth value;. Recall that path-accumulation

except for the EF logic, makes the model-checking proble@$sertions are interpreted with respect to entire pathstaid
undecidable. value is the same in all the suffixes of a path. Therefore,fior a

LTL'"™ formula¢ with n limit-average assertiong, , ..., 60,

Corollary 10. The model-checking problem is undecidable fafe L TLlim formulay’ defined below is equivalent tp.
the temporal logics CT1, LTL , RTL, CTL, STL, UB, and EG,

extended by the atomic assertiSom(v) > c.

4

o= | 0L NO2N...NO, A ©(T,T,...,T) ]

Boolean Kripke structureOur setting considers a quan- VI o AG A A A GET,...T) ]

titative Kripke structure and a specification over its acaum
lated values. One may consider a possibly simpler question,
concerning a Boolean Kripke structure and a specificatiar ov
the average of truth values. For an atomic proposigptet
Avg(p) denote the average of truth valuegpaip to the current  Note that in the formula’, each disjunct is a conjunction of
point of time. We can then have specifications with new atomécstandard LTL formula and a Boolean combination of limit-
assertions, likeAvg(p) > 3. average assertions. We denote the latter dsnd-average

Is the model checking of such a specification decidablé®mula
No. It is undecidable by a simple reduction from our setting. Now, since we check for the existence of a computation
Instead of using the numerical variablesand v with values that satisfiesp, each disjunct ofy’ can be checked separately.
{1,0,—1}, we can use the atomic propositiopsand ¢, and Therefore, we should only solve the problem of deciding
represent the numeric values byl = FF, 0 = TF and1 = TT. whether there is a computation satisfyigg\ £ for a a limit-
The Boolean Kripke structure that corresponds to the machiaverage formula and a standard LTL formulé. Before de-
in Example 8 is shown in Figure 4, antlp,.,.- iS adjusted scribing the solution, we recall the relevant theory of austa

V[ =0 A=O02N...A=0, AN @F,F,....F) ]

as follows. on infinite words.
1 1 A nondeterministic Blichi automaton (NBW, for short) is
Yproper = (z2 — Avg(p) = 5) A (zp — Avg(p) # 5) N A= (3,Q,qn,d,a), whereX is the input alphabety is a
1 1 finite set of statesy;,, € @ is an initial statesy : Q x X — 29
(y= = Avgl(q) = 5) A (yp — Avg(q) # 5)- is a transition function, and C ( is a set of accepting states.
Arunr =rg,r1,--- of Aonawordw = w; -wy--- € X%

10



. o ~ o)
is an infinite sequence of states such that= g;,, and for Zﬁﬂ;’ﬂ% _ X [([;{%]Ipu) < =l which converges td).
everyi > 0, we have that;; € 6(r;,w;11). The runr is : P r -

acceptingiff inf (r) N« # (. An automaton accepts a word if \we can now show how to adjust the emptiness algorithm

it has an accepting run on it. The language of an automatgfs] for handling the Biichi fairness condition.
A, denotedL(A), is the set of words thatl accepts. Given i o . )
an LTL formula¢ over a setP of atomic propositions, it is Lemma 12. Consider a quantitative Kripke structuig with

possible to translaté to an NBW A, over the alphabe?”. a Bichi fairness cpnditiom. T_here is an _al_gorithm _to check
For every wordw € (2F)¢, the NBW A, has an accepting whether3 has a fair computation that satisfies a limit-average
run onw iff a computation that is labeled satisfies, [33]. formulax.

Consider a Kripke structuréc = (P, V, S, sin, R, L) and Proof: In [5], the authors describe an algorithm to check
the NBW A: = (27,Q,qin,d, ). We define their prod- whether a Kripke structurk (without faimess) has a compu-
uct B = K x A as the fair Kripke structureB = tation that satisfies a limit-average formufa The algorithm
(0,V,S%Q, (8in, gin), ', L', Sx v}, whereR'((s, q), (s'.¢')) is based on a procedu@mponentCheck(}M, x), which is
iff R(s,s’) andq’ € (g, [P]s), and L is such that for every called in over every reachable maximally strongly compdnen
veV,seS, andg € Q, we have[v] o = [v]s. M of K. It is shown thatComponentCheck(M,y) = T

Checking for a fair computation with limit-average propiff there is a computation of)/ that satisfiesy. Since
erties: Given a limit-average formulay and quantitative [LimInfAvg(v)]. and[LimSupAvg(v)]., are indifferent to any
Kripke structurekC with a Blchi fairness condition, we checkfinite prefix of 7, it follows that K has a computation that
whether £ has a fair computation that satisfigs . The satisfiesy iff some componend/ of K has such a computation
problem for Kripke structures without fairness was solved i[5].

[5]* For extending the technique there to Kripke structures e claim that3 has a fair computation satisfying iff B
with fairness, we first need the following lemma. It intuély has a maximally strongly componehf such that\/ N« # ()
shows that inserting infinitely, but negligibly, many caarst and ComponentCheck(M, ) = T.

values to a computation does not change its limit-averageObviously, if B has no such component, then no com-
values. putation of B can satisfy botha and x. As for the other
direction, assume that there is a compon&htwith a state
s € M Na, such thatComponentCheck(M, x) = T. Let 7 be
a computation of3, such that infr) C M andr satisfiesy.
If s € inf(r) then we are done. Otherwise, létbe a state in
inf(r), and lety be a finite cycle inM that visits boths and
!

Lemma 11. Consider an infinite computation = z1, 22, . . .
and a finite computatiom = y1, o, ..., yx With a numeric
variable v bounded by a constant (that is, z; < ¢ and
y; <cforalli>1andl < j < k). Letn’ be the infinite
computation obtained fromr by inserting 4 at positions
{2¢ | i € IN}. Then, [LimInfAvg(v)]. = [LimInfAvg(v)].

S .
) . . .
and [LimSupAvg(v)], — [LimSupAvg (v)]. Consider the computation’ of B that is derived fromr

by insertingu at the positions{2! | i € IN}. We have that
Proof: Let #’ = z;, 29, 23,.... For showing thatr and = satisfies the Biichi condition, as it visitss € «a infinitely
7' have the same limit-average values, we define a surjectdféen. In addition, by Lemma 11, the limit-average values of
mappingp between the positions of andw, and show that 7’ are the same as those ®f thus#’ also satisfies the limit-
[v].; = [v]s, ., converges td. average formula¢, and we are done. [ |
We denote the range of a functigrby range(f) and define ~ We can thus conclude:
the functionsMove : IN — IN, Next : IN — IN andp: N — IN

Theorem 13. The model-checking problem for LTL is
as follows.

decidable.
Move(j) = j+k-[{2'[ieNand2’ <j}; Note that model checking an Lt formula is also de-
Next(j) = min{i | i€ range(Move) andi < j}; and  cidable with respect to a quantitative Kripke structurehwat
p(j) = Move !(Next(j)). fairness condition. The reason is that the algorithm alread

handles a Buchi condition, derived from the LTL formula,
Intuitively, every position ofzn’ that originated in7 is which can be combined with the fairness condition of the
mapped byp to its original position inw, while a position Kripke structure. Also, since the model-checking procedur
of 7’ that originated iry is treated as the next position of anyway translates the temporal-logic component to an NBW,
that originated inr. we can easily extend it to handle LTt with a regular layer
For showing thatr and =’ have the same limit-average- one in which the path formulas may also contain regular
values of v, we need to show that thdim ol expressions.
jooe Complexity: The complexity of the construction is
e@) = (. Indeed, for everyj € IN we have that roughly exponential in the size of the Kripke structure, bigu
exponential in the LTL formula, and triply exponential ireth
4The paradigm in [5] is different from ours, as the limit-zage formula number of numeric variables. More formally, for a Kripke
there constitutes the acceptance conditions for the attoma structure withn states and an LTL formula of length with &

g(i) [v]s

p(5)
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numeric variables, the construction-complexity is bowhtg
O((2™*2™)k). It conveys the following complexitie™ for
translating an LTL formula to a Biichi automatonyx 2 for

the product of the Kripke structure and the Biichi automaton
2n*2" for the number of simple cycles in the product, anol24
(2*2")k for solving the convex-hull intersection questioné, ]

involving 27*2" points of dimensiork.

A lower bound for the required complexity is an open
problem. Specifically, one may seek a construction that does
not rely on the simple cycles of the Kripke structure, fope]
removing the exponential dependency in the Kripke strleactur[
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