
Logical Methods in Computer Science
Vol. 10(1:10)2014, pp. 1–33
www.lmcs-online.org

Submitted May. 22, 2013
Published Feb. 13, 2014

EXACT AND APPROXIMATE DETERMINIZATION OF

DISCOUNTED-SUM AUTOMATA ∗

UDI BOKER a AND THOMAS A. HENZINGER b

a The Interdisciplinary Center, Herzliya, Israel

b IST Austria, Klosterneuburg, Austria

Abstract. A discounted-sum automaton (NDA) is a nondeterministic finite automaton
with edge weights, valuing a run by the discounted sum of visited edge weights. More
precisely, the weight in the i-th position of the run is divided by λi, where the discount
factor λ is a fixed rational number greater than 1. The value of a word is the minimal value
of the automaton runs on it. Discounted summation is a common and useful measuring
scheme, especially for infinite sequences, reflecting the assumption that earlier weights are
more important than later weights. Unfortunately, determinization of NDAs, which is often
essential in formal verification, is, in general, not possible.

We provide positive news, showing that every NDA with an integral discount factor is
determinizable. We complete the picture by proving that the integers characterize exactly
the discount factors that guarantee determinizability: for every rational discount factor
λ 6∈ N, there is a nondeterminizable λ-NDA. We also prove that the class of NDAs with
integral discount factors enjoys closure under the algebraic operations min, max, addition,
and subtraction, which is not the case for general NDAs nor for deterministic NDAs.

For general NDAs, we look into approximate determinization, which is always possible
as the influence of a word’s suffix decays. We show that the naive approach, of unfolding
the automaton computations up to a sufficient level, is doubly exponential in the discount
factor. We provide an alternative construction for approximate determinization, which is
singly exponential in the discount factor, in the precision, and in the number of states. We
also prove matching lower bounds, showing that the exponential dependency on each of
these three parameters cannot be avoided.

All our results hold equally for automata over finite words and for automata over infinite
words.

2012 ACM CCS: [Theory of computation]: Formal languages and automata theory.
Key words and phrases: Discounted-sum automata, Determinization, Approximation, Quantitative

verification.
∗ The present article combines and extends [BH11, BH12].
b This work was supported in part by the Austrian Science Fund NFN RiSE (Rigorous Systems Engineering)

and by the ERC Advanced Grant QUAREM (Quantitative Reactive Modeling).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(1:10)2014
c© U. Boker and T. A. Henzinger
CC© Creative Commons

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IST Austria: PubRep (Institute of Science and Technology)

https://core.ac.uk/display/268226165?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/about/licenses


2 U. BOKER AND T. A. HENZINGER

1. Introduction

Discounting the influence of future events is a key paradigm in economics and it is studied
in game theory (e.g. [ZP96, And06]), Markov decision processes (e.g. [GZ07, MTZ10]),
and automata theory (e.g. [dAHM03, DK06, CDH09, CDH10a, CDH10b]). Discounted
summation formalizes the concept that an immediate reward is better than a potential one
in the far-away future, as well as that a potential problem in the future is less troubling
than a current one.

A discounted-sum automaton (NDA) is a nondeterministic automaton with rational
weights on the transitions, where the value of a run is the discounted summation of the
weights along it. Each automaton has a fixed discount-factor λ, which is a rational number
bigger than 1, and the weight in the ith position of a run is divided by λi. The value of a
word is the minimal value of the automaton runs on it. Hence, an NDA realizes a function
from words to real numbers. Two automata are equivalent if they realize the same function,
namely if they assign the same value to every word.

Discounted summation is of special interest for automata over infinite words. There are
two common ways to adjust standard summation for handling infinite sequences: discounting
and limit-averaging. The latter, which relates to the input suffixes, has been studied a lot in
mean-payoff games and, more recently, in limit-average automata [CDH10b, DDG+10]; the
former, which relates more to the input prefixes, has received comparatively little attention.

Automata are widely used in formal verification, for which automata comparison is
fundamental. Specifically, one usually considers the following three questions, ordered
from the most difficult one to the simplest one: general comparison (language inclusion),
universality, and emptiness. In the Boolean setting, where automata assign Boolean values
to the input words, the three questions, with respect to automata A and B, are whether
A ⊆ B, A = True, and A = False. In the quantitative setting, where automata assign
numeric values to the input words, the universality and emptiness questions relate to a
constant threshold, usually 0. Thus, the three questions are whether A ≤ B, A ≤ 0, and
A ≥ 0.

A central problem with these quantitative automata is that only the emptiness question
is known to be solvable [CDH10b]. For limit-average automata, the two other questions
are undecidable [DDG+10]. For NDAs, it is an open question whether universality and
comparison are decidable. (For special cases, such as “functional automata”, where all
runs over a single word yield the same value, the problem is decidable [FGR12].) This is
not the case with DDAs, for which all three questions have polynomial solutions [ZP96,
And06, CDH10b]. Unfortunately, NDAs cannot, in general, be determinized. It is currently
known that for every rational discount-factor 1 < λ < 2, there is a λ-NDA that cannot be
determinized [CDH10b].

It turns out, quite surprisingly, that discounting by an integral factor forms a “well be-
haved” class of automata, denoted “integral NDAs”, allowing for determinization (Section 3)
and closed under the algebraic operations min, max, addition and subtraction (Section 6).
The above closure is of special interest, as neither NDAs nor DDAs are closed under the max
operation (Theorem 6.1). Furthermore, the integers, above 1, characterize exactly the set of
discount factors that guarantee determinizability (Section 4). That is, for every rational
factor λ 6∈ N, there is a non-determinizable λ-NDA.

The discounted summation intuitively makes NDAs more influenced by word-prefixes
than by word-suffixes, suggesting that some basic properties are shared between automata



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 3

over finite words and over infinite words. Indeed, all the above results hold for both models.
Yet, the equivalence relation between automata over infinite words is looser than the one on
finite words. That is, if two automata are equivalent with respect to finite words then they
are also equivalent with respect to infinite words, but not vice versa (Lemma 3.3).

The above results relate to complete automata; namely, to automata in which every
state has at least one transition over every alphabet letter. Also, our automata do not
have a Boolean acceptance condition, which would have made them compute a partial
function instead of a total one. For incomplete automata or, equivalently, for automata
with ∞-weights, or automata where some of the states are accepting and some are not, no
discount factor can guarantee determinization (Section 4.2). In the scope of discounted-sum
automata, the restriction to complete automata is very natural, as infinite-weight edges
break the property of the decaying importance of future events.

Our determinization procedure, described in Section 3.1, is an extension of the subset
construction, keeping a “recoverable-gap” value to each element of the subset. Intuitively,
the “gap” of a state q over a finite word u stands for the extra cost of reaching q, compared
to the best possible value so far. This extra cost is multiplied, however, by λ|u|, to reflect the
λ|u| division in the value-computation of the suffixes. A gap of q over u is “recoverable” if
there is a suffix w that “recovers” it, meaning that there is an optimal run over uw that visits
q after reading u. Due to the discounting of the future, once a gap is too large, it is obviously
not recoverable. Specifically, for every λ, we have that

∑∞
i=0( 1

λi
) = 1

1− 1
λ

= λ
λ−1 ≤ 2. Hence,

our procedure only keeps gaps that are smaller than twice the maximal difference between
the automaton weights.

The determinization procedure may be used for an arbitrary λ-NDA, always providing
an equivalent λ-DDA, if terminating. Yet, it is guaranteed to terminate for a λ-NDA with
λ ∈ N, while it might not terminate in the case that λ ∈ Q \N.

For integral NDAs, the key observation is that there might only be finitely many
recoverable gaps (Lemma 3.2). More precisely, for an integral NDA A, there might be up to
m recoverable gaps, where m is the maximal difference between the weights in A, multiplied
by the least common denominator of all weights. Accordingly, our determinization procedure
generates a DDA with up to mn states, where n is the number of states in A. We show,
in Section 3.3, that there must indeed be a linear dependency on the weight values (and
thus possibly an exponential dependency on their representation), as well as an exponential
dependency on the number of states.

For nonintegral NDAs, the key observation is that the recoverable gaps might be arbi-
trarily close to each other (Theorem 4.1). Hence, the bound on the maximal value of the gaps
cannot guarantee a finite set of recoverable gaps. Different gaps have, under the appropriate
setting, suffixes that distinguish between them, implying that an equivalent deterministic
automaton must have a unique state for each recoverable-gap (Lemma 3.6). Therefore, an
automaton that admits infinitely many recoverable gaps cannot be determinized.

As nonintegral NDAs cannot, in general, be determinized, we investigate, in Section 5,
their approximate determinization. We define that an automaton can be determinized
approximately if for every real precision ε > 0, there is a deterministic automaton such
that the difference between their values on all words is less than or equal to ε. Due to
the discounting in the summation, all NDAs allow for approximate determinization, by
unfolding the automaton computations up to a sufficient level. This is in contradistinction
to other common quantitative automata, such as sum, average and limit-average automata,
which cannot be determinized approximately [BH12]. The smaller the required precision



4 U. BOKER AND T. A. HENZINGER

is, and the closer the discount-factor is to 1, the more expensive it is to determinize an
NDA approximately. We represent the precision by ε = 2−p and the discount factor by
λ = 1 + 2−k. We analyze the unfolding approach to construct an automaton whose state
space is exponential in the representation of the precision (p) and doubly exponential in the
representation of the discount factor (k).

We provide an alternative construction for approximate determinization, by generalizing
the determinization procedure of Section 3.1. Recall that this procedure need not terminate
for a nonintegral discount factor, since there might be infinitely many recoverable gaps. We
overcome the problem by rounding the gaps to a fixed resolution. This obviously guarantees
termination, however it raises the question of how an unbounded number of gap rounding
allows for the required precision. The key observation is that the rounding is also discounted
along the computation. We show that the construction is singly exponential in k, in p, and
in the number of states of the automaton. We complete the picture by proving matching
lower bounds, showing exponential dependency on each of these three parameters.

It turns out that closure under algebraic operation is also closely related to the question
of whether the set of recoverable gaps is finite. Considering the operations of addition,
subtraction, minimum, and maximum, between two automata, the latter is the most
problematic one, as the value of a word is defined to be the minimal value of the automaton
runs on it. For two NDAs, A and B, one may try to construct an automaton C = max(A,B),
by taking the product of A and B, while maintaining the recoverable gaps of A’s original
states, compared to B’s original states. This approach indeed works for integral NDAs
(Theorem 6.2). Note that determinizability is not enough, as neither NDAs nor DDAs are
closed under the max operation. Furthermore, we show, in Theorem 6.1, that there are
two DDAs, A and B, such that there is no NDA C with C = max(A,B). For precluding the
existence of such a nondeterministic automaton C, we cannot make usage of Lemma 3.6,
and thus use a more involved, “pumping-style”, argument with respect to recoverable gaps.

Related work. Weighted automata are often handled as formal power series, mapping
words to a semiring [DKV09]. By this view, the weight of a run is the semiring-multiplication
of the transition weights along it, while the weight of a word is the semiring-addition of
its possible run weights. Discounted-summation is, upfront, not an associative operation.
Yet, it can be encoded as such, allowing to view it as operating over a semiring. For the
semiring setting, there are numerous works, including results on determinization [Moh97,
DKV09]. Nevertheless, the algorithms for determinizing arbitrary automata over semirings
are general, and do not take advantage of the special properties of discounted summation.
For that reason, our algorithm is guaranteed to terminate over every integral discounted-sum
automaton, which is not the case for the general determinization algorithm. In particular,
our determinization algorithm differs from the algorithm in [DKV09, Chapter 7.2] in two
main aspects that are special to discounted summation: (a) the data associated with the
states of the deterministic automata concern, in our algorithm, gaps, whereas in [DKV09] it
concerns residuals. A residual of a (finite) path is the difference between the accumulated
weights along it and the accumulated weights along the (so far) optimal path. A gap is
the “future difference” between these accumulated values, meaning the extra cost that will
equalize the two paths, taking into account the future discounting; and (b) Due to the
future discounting, gaps have a maximal relevant value (threshold), over which they can be
disregarded, which is not the case with residuals.



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 5

Formal power series are also generalized, in [DK06], for handling infinite discounted
summation. The weight of a run is defined to be a “skewed multiplication” of the weights
along it, where this “skewing” corresponds to the discounting operation. Yet, [DK06] mainly
considers the equivalence between recognizable series and rational series, and does not handle
automata determinization.

Some determinization algorithms of weighted automata are guaranteed to terminate,
provided that the nondeterministic automaton satisfies the “twins” property [Moh97, DKV09,
AKL11]. Roughly speaking, the twins property says that different runs over the same input
provide the same value, up to a finite set of differences between their values. These differences
in the values stem from the different prefixes (delays) that might lead to different loops over
the same input. These loops, however, must yield the same value. For that reason, the twins
property is a sufficient condition for the termination of the general determinization algorithm
of [DKV09]. Our notion of gaps is unrelated to the twins property, and does not depend
on a specific structure of the nondeterministic automaton. It allows the determinization
algorithm to terminate over every integral discounted-sum automaton, whether or not it has
the twins property.

Discounted Markov decision processes (e.g. [GZ07, MTZ10]) and discounted games (e.g.
[ZP96, And06]) generalize, in some sense, deterministic discounted-sum automata. The
former adds probabilities and the latter allows for two player choices. However, they do
not cover nondeterministic automata. One may note that nondeterminism relates to “blind
games”, in which each player cannot see the other player’s moves, whereas in standard
games the players have full information on all moves. Indeed, for a discounted-game, one can
always compute an optimal strategy [ZP96], while a related question on nondeterministic
discounted-sum automata, of whether the value of all words is below 0, is not known to be
decidable.

The discounted-sum automata used in [CDH10b] are the same as ours, with only
syntactic differences – they use the discount-factor λ as a multiplying factor, rather than
as a dividing one, and define the value of a word as the maximal value of the automaton
runs on it, rather than the minimal one. The definitions are analogous, replacing λ with
1
λ and multiplying all weights by (−1). In [CDH10b], it is shown that for every rational
discount-factor 1 < λ < 2, there is a λ-NDA that cannot be determinized. We generalize
their proof approach, in Theorem 4.1, extending the result to every λ ∈ Q \N.

The importance of approximate determinization is well known (e.g. [AKL11, BGW01]).
In [AKL11], they consider approximate determinization of sum automata with respect to
ratio, showing that it is possible in cases that the nondeterministic automaton admits a
“t-twins” property, which is generalization of the twins property. In [BGW01], they also
consider sum automata, providing an efficient determinization algorithm, which, however, is
not guaranteed to be within a certain distance from the nondeterministic automaton. In
general, we are unaware of any work on the approximation of automata over infinite words,
such as discounted-sum automata.

2. Discounted-Sum Automata

We consider discounted-sum automata with rational weights and rational discount factors
over finite and infinite words.



6 U. BOKER AND T. A. HENZINGER

Formally, given an alphabet Σ, a word over Σ is a finite or infinite sequence of letters in
Σ, with ε for the empty word. We denote the concatenation of a finite word u and a finite
or infinite word w by u·w, or simply by uw.

A discounted-sum automaton (NDA) is a tuple A = 〈Σ, Q, qin, δ, γ, λ〉 over a finite
alphabet Σ, with a finite set of states Q, an initial state qin ∈ Q, a transition function
δ ⊆ Q× Σ×Q, a weight function γ : δ → Q, and a discount factor 1 < λ ∈ Q. We write
λ-NDA to denote an NDA with a discount factor λ, for example 5

2 -NDA, and refer to an
“integral NDA” when λ in an integer. For an automaton A and a state q of A, we denote by
Aq the automaton that is identical to A, except for having q as its initial state.

Intuitively, {q′
∣∣ (q, σ, q′) ∈ δ} is the set of states that A may move to when it is in the

state q and reads the letter σ. The automaton may have many possible transitions for each
state and letter, and hence we say that A is nondeterministic. In the case where for every
q ∈ Q and σ ∈ Σ, we have that |{q′

∣∣ (q, σ, q′) ∈ δ}| ≤ 1, we say that A is deterministic,
denoted DDA.

In the case where for every q ∈ Q and σ ∈ Σ, we have that |{q′
∣∣ (q, σ, q′) ∈ δ}| ≥ 1, we

say that A is complete. Intuitively, a complete automaton cannot get stuck at some state.
In this paper, we only consider complete automata, except for Section 4.2, handling

incomplete automata. It is natural to restrict to complete discounted-sum automata, as
infinite-weight edges break the property of the decaying importance of future events.

A run of an automaton is a sequence of states and letters, q0, σ1, q1, σ2, q2, . . ., such that
q0 = qin and for every i, (qi, σi+1, qi+1) ∈ δ. The length of a run, denoted |r|, is n for a finite
run r = q0, σ1, q1, . . . , σn, qn, and ∞ for an infinite run.

The value of a run r is γ(r) =
∑|r|−1

i=0
γ(qi,σi+1,qi+1)

λi
. The value of a word w (finite or

infinite) is A(w) = inf{γ(r)
∣∣ r is a run of A on w}. A run r of A on a word w is said to

be optimal if γ(r) = A(w). By the above definitions, an automaton A over finite words
realizes a function from Σ∗ to Q and over infinite words from Σω to R. Two automata, A
and A′, are equivalent if they realize the same function. The equivalence notion relates to
either finite words or infinite words. (By Lemma 3.3, equivalence over finite words implies
equivalence over infinite words, but not vice versa.)

Next, we provide some specific definitions, to be used in the determinization construction
and in the non-determinizability proofs.

The cost of reaching a state q of an automaton A over a finite word u is cost(q, u) =
min{γ(r)

∣∣ r is a run of A on u ending in q}, where min ∅ =∞. The gap of a state q over a

finite word u is gap(q, u) = λ|u|(cost(q, u)−A(u)). Note that when A operates over infinite
words, we interpret A(u), for a finite word u, as if A was operating over finite words.

Intuitively, the gap of a state q over a word u stands for the weight that a run starting
in q should save, compared to a run starting in u’s optimal ending state, in order to make
q’s path preferable. A gap of a state q over a finite word u is said to be recoverable if
there is a suffix that makes this path optimal; that is, if there is a word w, such that

cost(q, u) + Aq(w)

λ|u|
= A(uw). The suffix w should be finite/infinite, depending on whether

A operates over finite/infinite words.
Notes on notation-conventions: The discount factor λ is often used in the literature as

a multiplying factor, rather than as a dividing factor, thus taking the role of 1
λ , compared

to our definitions. Another convention is to value a word as the maximal value of its
possible runs, rather than the minimal value; the two definitions are analogous, and can be
interchanged by multiplying all weights by (−1).



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 7

3. Determinizability of Integral Discounted-Sum Automata

In this section, we show that all complete NDAs with an integral factor are determinizable.
Note that the discounting factor in an NDA is defined to be bigger than 1. When it equals
to 1, which is the case of non-discounting sum automata, some nondeterministic automata
cannot be determinized. The decision problem, of whether a non-discounting sum automaton
can be determinized, is an open problem [ABK11].

Formally, we provide the following result.

Theorem 3.1. For every complete λ-NDA A with an integral factor λ ∈ N, there is an
equivalent complete λ-DDA with up to mn states, where m is the maximal difference between
the weights in A, multiplied by the least common denominator of all weights, and n is the
number of states in A.

Proof. Lemmas 3.2–3.4, given in the subsections below, constitute the proof.

Theorem 3.1 stands for both automata over finite words and over infinite words.
The determinization procedure extends the subset construction, by keeping a recoverable-

gap value to each element of the subset. It resembles the determinization procedure of
non-discounting sum automata over finite words [Moh97, DKV09], while having two main
differences: the weight-differences between the reachable states is multiplied at every step
by λ, and differences that exceed some threshold are removed.

The procedure may be used for an arbitrary λ-NDA, always providing an equivalent
λ-DDA, if terminating. It is guaranteed to terminate for a λ-NDA with λ ∈ N, which is not
the case for λ ∈ Q \N.

We start, in Subsection 3.1, with the determinization procedure, continue, in Subsec-
tion 3.2, with its termination and correctness proofs, and conclude, in Subsection 3.3, with
lower bounds.

3.1. The Construction. Consider an NDA A = 〈Σ, Q, qin, δ, γ, λ〉. We inductively con-
struct an equivalent DDA D = 〈Σ, Q′, q′in, δ′, γ′, λ〉. (An example is given in Figure 1.)

Let T be the maximal difference between the weights in A. That is, T = max{|x −
y|
∣∣ x, y ∈ range(γ)}. Since

∑∞
i=0( 1

λi
) = 1

1− 1
λ

= λ
λ−1 ≤ 2, we define the set G = {v

∣∣ v ∈
Q and 0 ≤ v < 2T} ∪ {∞} of possible recoverable-gaps. The ∞ element denotes a non-
recoverable gap, and behaves as the standard infinity element in the arithmetic operations
that we will be using. Note that our discounted-sum automata do not have infinite weights;
it is only used as an internal element of the construction.

A state of D extends the standard subset construction by assigning a gap to each state
of A. That is, for Q = {q1, . . . , qn}, a state q′ ∈ Q′ is a tuple 〈g1, . . . , gn〉, where gh ∈ G for
every 1 ≤ h ≤ n. Intuitively, the gap gh of a state qh stands for the extra cost of reaching
qh, compared to the best possible value so far. This extra cost is multiplied, however, by λl,
for a finite run of length l, to reflect the λl division in the value-computation of the suffixes.
Once a gap is obviously irreducible, by being larger than or equal to 2T , it is set to be ∞.

In the case that λ ∈ N, the construction only requires finitely many elements of G, as
shown in Lemma 3.2 below, and thus it is guaranteed to terminate.

For simplicity, we assume that qin = q1 and extend γ with γ(〈qi, σ, qj〉) =∞ for every
〈qi, σ, qj〉 6∈ δ. The initial state of D is q′in = 〈0,∞, . . . ,∞〉, meaning that qin is the only
relevant state and has a 0 gap.



8 U. BOKER AND T. A. HENZINGER

D:

A:

s1

〈3, 0〉

〈0, 1〉

〈0,∞〉 〈0, 3〉

s0

〈∞, 0〉

λ = 3

c2 = min(∞+ 1, 0 +∞) =∞

a,−2

b,−1
a, 0

a, 1 b, 1

a, 0

b,−1

b,−1

x2 = 3(∞− 1) =∞

a,−2

b,−1b, 1

a,−1

a,−2

c1 = min(0 + 0, 1 + 1) = 0
c2 = min(0 + 1

3
, 1− 2) = −1

c = min(0,−1) = −1
x1 = 3(0− (−1)) = 3

x2 = 3(−1− (−1)) = 0

c1 = min(3 + 0, 0 + 1) = 1

c2 = min(3 + 1
3
, 0− 2) = −2

c = min(1,−2) = −2
x1 = 3(1− (−2)) = 9 ∞
x2 = 3(−2− (−2)) = 0

b, 1

a, 0

b, 0a, 1
3

x1 = 3(1− 1) = 0
c = min(1,∞) = 1

c1 = min(∞− 1, 0 + 1) = 1

Figure 1: Determinizing the 3-NDA A into the 3-DDA D. The gray bubbles detail some of
the intermediate calculations of the determinization procedure.

We inductively build D via the intermediate automata Di = 〈Σ, Q′i, q′in, δ′i, γ′i, λ〉. We
start with D1, in which Q′1 = {q′in}, δ′1 = ∅ and γ′1 = ∅, and proceed from Di to Di+1, such
that Q′i ⊆ Q′i+1, δ′i ⊆ δ′i+1 and γ′i ⊆ γ′i+1. The construction is completed once Di = Di+1,
finalizing the desired deterministic automaton D = Di.

In the induction step, Di+1 extends Di by (possibly) adding, for every state q′ =
〈g1, . . . , gn〉 ∈ Q′i and letter σ ∈ Σ, a state q′′ := 〈x1, . . . , xn〉, a transition 〈q′, σ, q′′〉 and a
weight γi+1(〈q′, σ, q′′〉) := c, as follows:

• For every 1 ≤ h ≤ n, ch := min{gj + γ(〈qj , σ, qh〉)
∣∣ 1 ≤ j ≤ n}

• c := min
1≤h≤n

(ch)

• For every 1 ≤ h ≤ n, xh := λ(ch − c). If xh ≥ 2T then xh :=∞.

3.2. Termination and Correctness. We prove below that the above procedure always
terminates for a discount factor λ ∈ N, while generating an automaton that is equivalent to
the original one. We start with the termination proof.

Lemma 3.2. The above determinization procedure always terminates for a complete integral
λ-NDA A. The resulting deterministic automaton has up to mn states, where m is the



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 9

maximal difference between the weights in A, multiplied by the least common denominator
of all weights, and n is the number of states in A.

Proof. The induction step of the construction, extending Di to Di+1, only depends on A,
Σ and Q′i. Furthermore, for every i ≥ 0, we have that Q′i ⊆ Q′i+1. Thus, for showing the
termination of the construction, it is enough to show that there is a general bound on the
size of the sets Q′i. We do it by showing that the inner values, g1, . . . , gn, of every state q′

of every set Q′i are from the finite set Ḡ, defined below.
Let d ∈ N be the least common denominator of the weights in A, and let m ∈ N be the

maximal difference between the weights, multiplied by d. That is, m = d×max{|x−y|
∣∣x, y ∈

range(γ)}. We define the set Ḡ = {λcd
∣∣ 2m
λ > c ∈ N} ∪ {∞}

We start with Q′1, which satisfies the property that the inner values, g1, . . . , gn, of
every state q′ ∈ Q′1 are from Ḡ, as Q′1 = {〈0,∞, . . . ,∞〉}. We proceed by induction on
the construction steps, assuming that Q′i satisfies the property. By the construction, an
inner value of a state q′′ of Q′i+1 is derived by four operations on elements of Ḡ: addition,
subtraction (x− y, where x ≥ y), multiplication by λ ∈ N, and taking the minimum.

One may verify that applying these four operations on ∞ and numbers of the form λc
d ,

where λ, c ∈ N, results in ∞ or in a number v
d , where v ∈ N. Since the last operation in

calculating an inner value of q′′ is multiplication by λ, we have that v is divisible by λ. Once
an inner value exceeds 2m

d , it is replaced with ∞. Hence, all the inner values are in Ḡ.
Having up to m possible values to the elements of an n-tuple, provides the mn upper

bound for the state space of the resulting deterministic automaton.

Before proceeding to the correctness proof, we show that equivalence of automata over
finite words implies their equivalence over infinite words. Note that the converse need not
hold.

Lemma 3.3. If two NDAs, A and B, are equivalent with respect to finite words then they
are also equivalent with respect to infinite words. The converse need not hold.

Proof. Assume, by contradiction, two NDAs, A and B, that are equivalent with respect to
finite words and not equivalent with respect to infinite words. Then there is an infinite word
w and a constant number c 6= 0, such thatA(w)−B(w) = c. Letm be the maximal difference
between a weight inA and a weight in B. Since for every 1 < λ,

∑∞
i=0( 1

λi
) = 1

1− 1
λ

= λ
λ−1 ≤ 2,

it follows that the difference between the values that A and B assign to any word is smaller
than or equal to 2m. Hence, the difference between the values of their runs on suffixes of
w, starting at a position p, is smaller than or equal to 2m

λp .
Now, since A and B are equivalent over finite words, it follows that they have equally-

valued optimal runs over every prefix of w. Thus, after a long enough prefix, of length p
such that 2m

λp < c, the difference between the values of A’s and B’s optimal runs on w must
be smaller than c, leading to a contradiction.

A counter example for the converse is provided in Figure 2.

We proceed with the correctness proof. By Lemma 3.3, it is enough to prove the
correctness for automata over finite words.

Note that the correctness holds for arbitrary discount factors, not only for integral ones.
For the latter, the determinization procedure is guaranteed to terminate (Lemma 3.2), which
is not the case in general. Yet, in all cases that the procedure terminates, it is guaranteed
to be correct.



10 U. BOKER AND T. A. HENZINGER

A: B:

λ = 2

Σ, 2 Σ, 0Σ, 1

Figure 2: The automata A and B are equivalent with respect to infinite words, while not
equivalent with respect to finite words.

Lemma 3.4. Consider a λ-NDA A over Σ∗ and a DDA D, constructed from A as above.
Then, for every w ∈ Σ∗, A(w) = D(w).

Proof. Consider an NDA A = 〈Σ, Q, qin, δ, γ, λ〉 and the DDA D = 〈Σ, Q′, q′in, δ′, γ′, λ〉
constructed from A as above. Let T be the maximal difference between the weights in A.
That is, T = max{|x− y|

∣∣ x, y ∈ range(γ)}.
For a word w, let q′w = 〈g1, . . . , gn〉 ∈ Q′ be the last state of D’s run on w. We show by

induction on the length of the input word w that:

i. A(w) = D(w).
ii. For every 1 ≤ h ≤ n, gh = gap(qh, w) if gap(qh, w) < 2T and ∞ otherwise.

The assumptions obviously hold for the initial step, where w is the empty word, and all
values are 0. As for the induction step, we assume they hold for w and show that for every
σ ∈ Σ, they hold for w·σ. Let q′w·σ = 〈x1, . . . , xn〉 ∈ Q′ be the last state of D’s run on w·σ.

We start by proving the claim with respect to an infinite-state automaton D′ that is
constructed as in Section 3.1, except for not changing any gap to ∞. Afterwards, we shall
argue that changing all gaps that exceed 2T to ∞ does not harm the correctness.

i. By the definitions of cost and gap, we have for every 1 ≤ h ≤ n,

cost(qh, w·σ) = min
1≤j≤n

(cost(qj , w) +
γ(〈qj , σ, qh〉

λ|w|
) =

= min
1≤j≤n

(
gap(qj , w)

λ|w|
+A(w) +

γ(〈qj , σ, qh〉
λ|w|

) =

= A(w) +
1

λ|w|
( min
1≤j≤n

(gap(qj , w) + γ(〈qj , σ, qh〉))) =

= By the induction assumption =

= D′(w) +
1

λ|w|
( min
1≤j≤n

(gj + γ(〈qj , σ, qh〉))).



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 11

By the construction of D′ (Section 3.1), the transition weight c that is assigned on the
(|w|+ 1)-step is c = min

1≤h≤n
( min
1≤j≤n

(gj + γ(〈qj , σ, qh〉))). Therefore,

D′(w·σ) = D′(w) +
c

λ|w|
=

= D′(w) +
1

λ|w|
min

1≤h≤n
min

1≤j≤n
(gj + γ(〈qj , σ, qh〉)) =

= min
1≤h≤n

(D′(w) +
1

λ|w|
min

1≤j≤n
(gj + γ(〈qj , σ, qh〉))) =

= min
1≤h≤n

cost(qh, w·σ) =

= A(w·σ).

ii. We use the notations and the equations of part (i.) above. By the construction of D′,
for every 1 ≤ h ≤ n,

xh = λ( min
1≤j≤n

(gj + γ(〈qj , σ, qh〉))− c) =

= λ( min
1≤j≤n

(gj + γ(〈qj , σ, qh〉))− λ|w|(D′(w·σ)−D′(w))) =

= λ(λ|w|(cost(qh, w·σ)−D′(w))− λ|w|(D′(w·σ)−D′(w))) =

= λ|w|+1(cost(qh, w·σ)−D′(w·σ)) =

= λ|w|+1(cost(qh, w·σ)−A(w·σ)) =

= gap(qh, w·σ).

It is left to show that the induction is also correct for the finite-state automaton D. The
only difference between the construction of D and of D′ is that the former changes all gaps
(gj) above 2T to ∞. We should thus show that if gj , for some 1 ≤ j ≤ n, exceeds 2T at a
step i of the construction, and this gj influences gh, for some 1 ≤ h ≤ n, at step i+ 1, then
gh ≥ 2T . This implies that D(w) = D′(w), since at every step of the construction there is
at least one 1 ≤ h ≤ n, such that gh = 0, corresponding to an optimal run of A on w ending
in state q + h. Formally, we should show that if gh = λ(gj + γ(〈qj , σ, qh〉) − c), where c is
the transition weight assigned in the construction on the i+ 1 step (as defined in part (i.)
above), then gh ≥ 2T . Indeed, gh ≥ λ(2T + γ(〈qj , σ, qh〉)− c) ≥ 2(2T + γ(〈qj , σ, qh〉)− c) ≥
2(2T + (−T )) = 2T .

3.3. State Complexity. For an integral NDA A, the deterministic automaton constructed
as in Subsection 3.1 has up to mn states, where m is the maximal difference between the
weights in A, multiplied by the least common denominator of all weights, and n is the number
of states in A (Lemma 3.2). We provide below corresponding lower bounds. The lower
bounds are with respect to automata that operate over infinite words, and by Lemma 3.3
they also apply to automata operating over finite words.



12 U. BOKER AND T. A. HENZINGER

A′k:

Ak:

qk+1

a, b; 0

a, b, 0

a, b; 0 a, b; 0 a, b; 0
. . .

a; 0 q0 q1 qkqin

a, b a, b
. . .

aqin q0 q1
a, b qk

a, b

qend

a, b,#; 0

#; −1#; 0#; 0 #; 0

a, b

a, b

Figure 3: The family Ak of finite automata accepts finite words that have an ‘a’ in the last-
by-k position. The family A′k of NDAs is their direct generalization to discounted-
sum automata over infinite words, where the # sign marks the “end” of the word.
This generalization allows to show the exponential dependency on the number of
states in determinizing discounted-sum automata.

Dependency on the number of states. Unavoidable exponential dependency of the
determinization on the number of states (n) is straightforward, by considering discounted-
sum automata as generalizing finite automata over finite words. We demonstrate this
generalization in Figure 3, showing how to translate the finite automaton Ak over the
alphabet {a, b} into an NDA A′k over the alphabet {a, b,#} with transition weights in {0, 1}.
By this translation, the value that A′k assigns to an infinite word w is smaller than 0 if and
only if the # sign appears in w and the prefix of A′k up to the first # sign is accepted by
Ak. The automaton Ak has k + 1 states and accepts the language Lk of finite words that
have an ‘a’ in the last-by-k position. (For example, L1 accepts the words with an ‘a’ as the
penultimate letter.) It is known that a deterministic automaton Dk for Lk must have at
least 2k states. Assuming, by contradiction, a DDA D′k that is equivalent to A′k and has

less than 2k states, will easily allow to construct a deterministic automaton Dk for Lk with
less than 2k states: By the structure of A′k, it follows that Dk must have a 0 weight in all
transitions that occur before a # sign, and a weight of −1 in some of the transitions upon
reading #. Hence, one can translate D′k into the required finite automaton Dk by setting
the accepting states to be the states that have an outgoing transition with a weight of −1.

Proposition 3.5. For every integral discount factor λ there is a λ-NDA with k + 3 states
over the alphabet {a, b,#} and with weights in {0, 1}, such that every equivalent λ-DDA
must have at least 2k states.



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 13

Dependency on the weights. The dependency of the determinization construction on
the weight difference (m) is linear. Yet, a reasonable description of the automaton weights
is not unary, but, for example, binary, making the construction exponentially dependent
on the weight description. We show below that the determinization must indeed depend
on the weight value, making it possibly exponential in the weight description. For every
fixed discount factor λ, we provide a family of automata Ak, for k ∈ {λ, λ+ 1, λ+ 2, . . .}
(Figure 4) over a fixed alphabet and weights in (−k, 1), such that Ak has three states and an
equivalent deterministic automaton must have at least k − λ states (no matter how concise
the description of k in Ak is).

We start by providing a sufficient condition, under which two different gaps must
be associated with two different states of a deterministic automaton. The lemma below
generalizes an argument given in [CDH10b].

Lemma 3.6. Consider an NDA A for which there is an equivalent DDA D. If there is a
state q of A, finite words u and u′, and words w and z, such that:

i. A has runs on u and on u′ ending in q;
ii. gap(q, u) 6= gap(q, u′);
iii. The gaps of q over both u and u′ are recoverable with w, that is, A(uw) = cost(q, u) +

Aq(w)

λ|u|
and A(u′w) = cost(q, u′) + Aq(w)

λ|u′|
; and

iv. A is “indifferent” to concatenating z to u and to u′, that is A(uz) = A(u) and
A(u′z) = A(u′)

then the runs of D on u and on u′ end in different states.
The words w and z should be finite for automata over finite words and infinite for

automata over infinite words. In the former case, z is redundant as it can always be ε.

Proof. Consider the above setting. Then, we have that A(uw)−A(uz) = A(uw)−A(u) =

cost(q, u) + Aq(w)

λ|u|
−A(u) = (cost(q, u) −A(u)) + Aq(w)

λ|u|
= gap(q,u)+Aq(w)

λ|u|
and analogously

A(u′w)−A(u′z) = gap(q,u′)+Aq(w)

λ|u′|
. Thus,

(I) gap(q, u) = λ|u|[A(uw)−A(uz)]−Aq(w); gap(q, u′) = λ|u
′|[A(u′w)−A(u′z)]−Aq(w)

Now, assume, by contradiction, a single state p of D in which the runs of D on both u
and u′ end. Then, we have that

(II) D(uw)−D(uz) =
Dp(w)

λ|u|
; D(u′w)−D(u′z) =

Dp(w)

λ|u′|

Since A and D are equivalent, we may replace between [A(uw)−A(uz)] and [D(uw)−D(uz)]
as well as between [A(u′w) − A(u′z)] and [D(u′w) − D(u′z)]. Making the replacements in
equations (I) above, we get:

(I&II) gap(q, u) = λ|u|
Dp(w)

λ|u|
−Aq(w); gap(q, u′) = λ|u

′|Dp(w)

λ|u′|
−Aq(w)

Therefore, gap(q, u) = gap(q, u′), leading to a contradiction.

We continue with the lower bound with respect to the weight difference, showing that
the blow-up in the determinization depends on the weight value and not on the weight
description.



14 U. BOKER AND T. A. HENZINGER

Ak:

qin

q1 q2

Σ = { ‘−k, ‘−λ+ 1’, ‘−λ+ 2’, . . . , ‘−1’, ‘0’, ‘1’ }

‘v’, v

‘v’, v (e.g. ‘1’, 1 )

Σ, 0

Σ, 0

Figure 4: The family Ak of NDAs with weights in (−k, 1), where for every k, a deterministic
automaton equivalent to Ak must have at least k − λ states.

Theorem 3.7. For every integral discount factor λ ≥ 2 and number k > λ there is a λ-NDA
with three states, weights in {−k,−λ+ 1,−λ+ 2, . . . ,−1, 0, 1} over an alphabet of size λ+ 2,
such that every equivalent λ-DDA must have at least k − λ states.

Proof. For every λ ≥ 2 and k > λ, we define the λ-NDA Ak = 〈Σ, Q, qin, δ, γ, λ〉, as
illustrated in Figure 4, where

• Σ = {−k,−λ+ 1,−λ+ 2, . . . ,−1, 0, 1}
• Q = {qin, q1, q2}
• δ = {〈qin, σ, q1〉, 〈qin, σ, q2〉, 〈q1, σ, q1〉, 〈q2, σ, q2〉

∣∣ σ ∈ Σ}
• For every σ ∈ Σ and q ∈ Q: γ(〈q, σ, q1〉) = 0 and γ(〈q, σ, q2〉) = σ

Note that, for simplicity, we define the alphabet letters of Σ as numbers, denoting the letter
of a number n by ‘n’.

For every integer λ < x ≤ k, we show, by induction on x, that there is a finite word
ux, such that gap(q2, ux) = x. Intuitively, ux is the representation of x in base λ. Formally,
for the base case, we have x = λ and uλ = ‘1’. For the induction step, let y = dxλe. Then,
ux = uy ·‘x− λy’.

Now, for every λ < i < j ≤ k, we have that ui and uj satisfy the conditions of
Lemma 3.6, by having u = ui, u

′ = uj , z = ‘0’ω, and w = ‘− k’ω. Hence, a DDA equivalent
to Ak has two different states corresponding to each two different integers in {λ, . . . , k},
and we are done.

Dependency on the combination of states and weights. The exponential dependency
on the number of states (n) and on the weight description (logm), as discussed above, provides

a lower bound of 2max(n, logm). For showing that the construction depends on 2n logm = mn,
we use a rich alphabet of size in O(mn). For an alphabet of size linear in m and n, the
exact unavoidable state blow-up is left as an open problem. A family of automata Ak,l, with
which we provide this lower bound, is illustrated in Figure 5.

Theorem 3.8. For every λ, k, l ∈ N, there is a λ-NDA with l + 2 states and weights in
{−λk,−λk + 1, . . . ,−1, 0, 1}, such that every equivalent DDA has at least kl states.

Proof. For every λ, k, l ∈ N, we define the NDA Ak,l = 〈Σ, Q, qin, δ, γ, λ〉, as illustrated in
Figure 5, where:

• Σ = {〈v1, . . . vl〉
∣∣ for every 1 ≤ i ≤ l, vi ∈ {−λk,−λk + 1, . . . ,−1, 0, 1}}

• Q = {qin, q0, q1, . . . , ql}
• δ = {〈qin, σ, qi〉, 〈qi, σ, qi〉

∣∣ 0 ≤ i ≤ l and σ ∈ Σ}



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 15

Am,n:

qn

weights = {−λm,−λm+ 1, . . . ,−1, 0, 1}

q1q0

qin Σ = {‘〈v1, . . . , vn〉’
∣∣ for every 1 ≤ i ≤ n, vi ∈ weights}

‘〈v1, . . . , vn〉’, v1 〈v1, . . . , vn〉, vnΣ, 0

. . .

Figure 5: The family of integral NDAs, where for every k and l, a deterministic automaton
equivalent to Ak,l must have at least kl states.

• For every σ = 〈v1, . . . vl〉 ∈ Σ and 1 ≤ i ≤ l: γ(〈qin, σ, q0〉) = 0, γ(〈qin, σ, qi〉) = 0,
γ(〈q0, σ, q0〉) = 0 and γ(〈qi, σ, qi〉) = vi

Note that, for simplicity, we define the alphabet letters of Σ as tuples of numbers.
Consider a DDA D equivalent to Ak,l. We will show that there is a surjective mapping

between D’s states and the set of vectors V = {〈g1, . . . , gl〉
∣∣ for every 1 ≤ i ≤ l, 1 ≤ gi ≤ k}.

We call an l-vector of gaps, G = 〈g1, . . . , gl〉, a combined-gap, specifying the gaps of
q1, . . . , ql, respectively. Due to the rich alphabet, for every combined-gap G ∈ V , there is a
finite word uG, such that for every 1 ≤ i ≤ l, gap(qi, uG) = gi.

Every two different combined gaps, G and G′, are different in at least one dimension
j of their l-vectors. Thus, Ak,l satisfies the conditions of Lemma 3.6, by having u = uG,
u′ = uG′ , z =‘〈0, . . . , 0〉’ω, and w =‘〈0, . . . 0,−λk, 0, . . . 0〉’ω, where the repeated letter in w
has 0 in all dimensions except for the j’s dimension, in which it has −λk. Hence, Ak,l has
two different states corresponding to each two different vectors in V , and we are done.

4. Nondeterminizability of Nonintegral Discounted-Sum Automata

The discount-factor λ plays a key role in the question of whether a complete λ-NDA
is determinizable. In Section 3, we have shown that an integral factor guarantees the
automaton’s determinizabilty. In Subsection 4.1 below, we show the converse for every
nonintegral factor.

In the whole paper, except for Subsection 4.2 below, we only consider complete au-
tomata. In Subsection 4.2, we show that once allowing incomplete automata or, equivalently,
adding infinite weights, there is a non-determinizable automaton for every discount-factor λ,
including integral ones.

4.1. Complete Automata. We show below that for every noninntegral discount factor λ,
there is a complete λ-NDA that cannot be determinized. The proof generalizes the approach
taken in [CDH10b], where the case of 1 < λ < 2 was handled. It is shown for automata over
infinite words, and by Lemma 3.3 it also applies to automata over finite words.

Intuitively, for a discount factor that is not a whole number, a nondeterministic au-
tomaton might have infinitely many recoverable-gaps, arbitrarily close to each other. Two
different gaps have, under the appropriate setting, two suffixes that distinguish between



16 U. BOKER AND T. A. HENZINGER

A:

Σ = { ‘−5’, ‘−4’, ‘−2’, ‘0’, ‘2’ }

q1 q2

qin
λ = 5

2

Σ, 0

Σ, 0 ‘v’, v (e.g. ‘2’, 2 )

‘v’, v

Figure 6: The non-determinizable 5
2 -NDA A.

them (Lemma 3.6). Hence, an equivalent deterministic automaton must have a unique state
for each recoverable-gap, which is impossible for infinitely many gaps.

Theorem 4.1. For every nonintegral discount factor 1 < λ ∈ Q \N, there is a complete
λ-NDA for which there is no equivalent DDA (with any discount factor).

Proof. For every 1 < λ ∈ Q \ N, we define a complete λ-NDA A = 〈Σ, Q, qin, δ, γ, λ〉 and
show that A is not determinizable. The automaton A operates over infinite words, and by
Lemma 3.3 it also applies to automata operating over finite words.

Let λ = h
k , where h and k are mutually prime, and define:

• Σ = {−jk
∣∣ j ∈ N and jk < h} ∪ {−h, k}

• Q = {qin, q1, q2}
• δ = {〈qin, σ, q1〉, 〈qin, σ, q2〉, 〈q1, σ, q1〉, 〈q2, σ, q2〉

∣∣ σ ∈ Σ}
• For every σ ∈ Σ and q ∈ Q: γ(〈q, σ, q1〉) = 0 and γ(〈q, σ, q2〉) = σ

Note that, for simplicity, we define the alphabet letters of Σ as numbers, denoting the letter
of a number n by ‘n’. The NDA A for λ = 5

2 is illustrated in Figure 6.
We show that A cannot be determinized by providing an infinite word w, such that q2

has a unique recoverable gap for each of w’s prefixes. By Lemma 3.6, such a word w implies
that A cannot be determinized, as each of its prefixes can be continued with either ‘0’ω or
with a suffix that recovers q2’s gap.

We inductively define w, denoting its prefix of length i by wi, as follows: the first letter
is ‘k’ and the i+ 1’s letter is ‘−jk’, such that 0 ≤ gap(q2, wi)

h
k − jk ≤ k. Intuitively, each

letter is chosen to almost compensate on the gap generated so far, by having the same value
as the gap up to a difference of k.

We show that w has the required property, by proving the following three claims, each
being a step toward proving the next claim.

(1) The word w is infinite and q2 has a recoverable-gap for each of its prefixes.
(2) There is no prefix of w for which q2’s gap is 0.
(3) There are no two different prefixes of w for which q2 has the same gap.

Indeed:

(1) Since γ(〈q2,−h, q2〉) = −h, a gap g of q2 is obviously recoverable if g ≤ h. We show by
induction on the length of w’s prefixes that for every i ≥ 1, we have that gap(q2, wi) ≤ h.
It obviously holds for the initial step, as w1 =‘k’ and gap(q2, w1) = k hk = h. Assuming
that it holds for the i’s prefix, we can choose the i + 1’s letter to be some ‘−jk’ ∈ Σ,
such that 0 ≤ gap(q2, wi)− jk ≤ k. Hence, we get that

gap(q2, wi+1) = (gap(q2, wi)− jk)
h

k
≤ h. (4.1)



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 17

(2) Assume, by contradiction, a prefix of w of length n whose recoverable-gap is 0. We have
then, by Equation 4.1, that:

(((h− j1k)
h

k
− j2k)

h

k
. . .− jn−1k)

h

k
= 0

for some j1, . . . , jn ∈ N. Simplifying the equation, we get that

hn − j1khn−1 − j2k2hn−2 − . . .− jn−1k
n

kn−1
= 0

Therefore, hn = j1kh
n−1 + . . .+ jn−1k

n. Now, since k divides j1kh
n−1 + . . .+ jn−1k

n,
it follows that k divides hn, which leads to a contradiction, as h and k are mutually
prime.

(3) Assume, by contradiction, that q2 has the same gap x for two prefixes, n ≥ 1 steps
apart. We have then, by Equation 4.1, that:

((((x− j1k)
h

k
− j2k)

h

k
− j3k)

h

k
. . .− jnk)

h

k
= x

for some j1, . . . , jn ∈ N. Simplifying the equation, we get that

xhn − j1khn − j2k2hn−1 − . . .− jnknh
kn

= x

Thus,
x(hn − kn) = j1kh

n + j2k
2hn−1 + . . .+ jnk

nh

Hence, x(hn−kn) is an integer, and since x 6= 0 and the right side of the above equation
is divisible by k, so is x(hn − kn).

Let us take a closer look at the gap x, assuming that it is generated, in its first
occurrence, by a prefix of w of some length m. Following Equation 4.1, x = a

km−1 for
some integer a. We claim that a is co-prime with k, and show it by induction on the
length of w’s prefix with which the gap is associated. For the base case, the gap is
h
k0

, and the claim holds, as h and k are co-prime. Assume that the claim holds for a

prefix of length m− 1 with a gap a′

km−2 . Then, the next gap, following Equation 4.1, is
a

km−1 = ( a′

km−2 − jk)hk = h(a′−jkm−1)
km−1 , implying that a = h(a′ − jkm−1). Since h and a′

are co-prime with k, while jkm−1 is divisible by k, it follows that a is co-prime with k,
and the induction proof is done.

Now, we have by the above that k divides x(hn − kn) = a
km−1 (hn − kn), while a is

co-prime with k. Therefore, by Euclid’s lemma, k divides hn− kn. But, since k divides
kn, it follows that k also divides hn, which leads to a contradiction.

4.2. Incomplete Automata. Once considering incomplete automata or, equivalently, au-
tomata with ∞-weights, or automata where some of the states are accepting and some
are not, no discount factor can guarantee determinization. The reason is that there is no
threshold above which a gap becomes irrecoverable – no matter how (finitely) bad some
path is, it might eventually be essential, in the case that the other paths get stuck.

Formally:

Theorem 4.2. For every rational discount factor λ, there is an incomplete λ-NDA for
which there is no equivalent DDA (with any discount factor).



18 U. BOKER AND T. A. HENZINGER

B:

q1 q2

qin

Σ, 0

a, 0 b, 1
a, 1

Σ, 0

Figure 7: The incomplete automaton B is not determinizable with respect to any discount-
factor.

Proof. Consider the incomplete automaton B presented in Figure 7 with a discount factor
λ ∈ Q.

For every n ∈ N, we have that gap(q2, a
n) =

∑n
i=0 λ

i. Since q1 has no transition for
the letter b, it follows that all these gaps are recoverable. Hence, for every i, j ∈ N such
that i 6= j, we satisfy the conditions of Lemma 3.6 with u = ai, u′ = aj , z = aω and w = bω

(for automata over finite words, z = ε and w = b). Therefore, an equivalent deterministic
automaton must have infinitely many states, precluding its existence.

5. Approximate Determinization

As shown in Section 4, nonintegral NDAs cannot, in general, be determinized. Yet, by their
discounting behavior, they can always be determinized approximately. That is, for every
NDA, there is a DDA, such that the difference between their values, on all words, is as
small as required. The naive construction of the deterministic automaton is achieved by
unfolding the computations of the nondeterministic automaton up to a sufficient level. The
size of the constructed automaton depends on the required precision and on the proximity
of the discount-factor is to 1. We represent the precision by ε = 2−p and the discount factor
by λ = 1 + 2−k, for positive integers p and k. We analyze the unfolding construction to
generate an automaton whose state space is exponential in p and doubly exponential in k.
We then provide an alternative construction, by generalizing the determinization procedure
of Section 3.1. We show that our construction is singly exponential in k, in p, and in the
number of states of the automaton. We conclude the section by proving matching lower
bounds, showing exponential dependency on each of these three parameters.

We start with an interesting observation on discounting and half life time: for every
integer K ≥ 2, the half life time with respect to the discount factor 1 + 1

K , meaning the
number of time units before the discounting gets to 2, is roughly K. More precisely, as K
tends to infinity, (1 + 1

K )K is exactly e (≈ 2.72). Note that we can take advantage of this

property, as we represent the discount factor by 1 + 2−k, which equals to 1 + 1
K , for K = 2k.

For our purposes, we show in Lemma 5.1 below that (1 + 1
K )K is always between 2 and 3,

as well as a corresponding bound for log(1 + 1
K ).

Lemma 5.1. For every integer K ≥ 2, we have:

(1) 1 < K log(1 + 1
K ) < 3

2 .

(2) 2 < (1 + 1
K )K < 3.

Proof.



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 19

(1) We use the Mercator series, which is the Taylor series for the natural logarithm, stating

that for every −1 < x ≤ 1, ln(1 + x) = x− x2

2 + x3

3 −
x4

4 + . . .. Setting x = 1
K , we get

that ln(1 + 1
K ) = 1

K −
1

2K2 + 1
3K3 − 1

4K4 + . . .. Thus,

K ln(1 +
1

K
) = 1− 1

2K
+

1

3K2
− 1

4K3
+

1

5K4
− 1

6K5
+ . . . .

Since for every positive integer i, (− 1
iK(i−1) + 1

(i+1)Ki ) < 0, it follows that the above

series is smaller than 1. Analogously, since for every positive integer i, 1
iK(i−1)− 1

(i+1)Ki >

0, it follows that the above series is bigger than 1− 1
2K . Hence, 1− 1

2K < K ln(1+ 1
K ) < 1.

Therefore, as K tends to infinity, K log(1 + 1
K ) converges to log e, where e is Euler’s

constant. Specifically, for every K ≥ 2, we have 1 < K log(1 + 1
K ) < 3

2 .

(2) Let z = log(1 + 1
K ). we have (1 + 1

K )K = (1 + 1
K )

zK
z = ((1 + 1

K )
1
z )zK = 2zK .

From the first part of the lemma, we know that 1
K < z < 3

2K . Thus, 2 = 2
K
K < 2zK <

2
3K
2K < 3. Hence, 2 < (1 + 1

K )K < 3.

5.1. Approximate Automata. We define that an automaton can be determinized approx-
imately if for every real precision ε > 0, there is a deterministic automaton such that the
difference between their values on all words is less than or equal to ε. Formally,

Definition 5.2 (Approximation).

• An NDA A′ ε-approximates an NDA A, for a real constant ε > 0, if for every word w,
|A(w)−A′(w)| ≤ ε.
• An NDA A can be determinized approximately if for every real constant ε > 0 there is a

DDA A′ that ε-approximates A.

The relation between NDAs on finite words and on infinite words, as stated in Lemma 3.3,
follows to approximated automata, meaning that approximation over finite words guarantees
approximation over infinite words, but not vice versa. Intuitively, as the influence of word
suffixes is decaying, the distance between two automata cannot change “too much” after
long enough prefixes. Hence, if the automata are close enough for every finite prefix, so
they are for an entire infinite word. As for the converse, the distance between the automata
might gradually decrease, only converging at the infinity.

Lemma 5.3. For every precision ε > 0 and discount factor λ > 1, if a λ-NDA ε-
approximates another λ-NDA over finite words then it also ε-approximates it over infinite
words. The converse need not hold.

Proof. Assume, by contradiction, a precision ε > 0, a discount factor λ > 1, and two λ-
NDAs, A and B, such that B ε-approximates A with respect to finite words but not with
respect to infinite words.

Then there is an infinite word w, such that |A(w) − B(w)| − ε = c > 0. Let m be
the maximal difference between a weight in A and a weight in B. Since for every λ > 1,∑∞

i=0( 1
λi

) = 1
1− 1

λ

= λ
λ−1 , it follows that the difference between the values that A and B

assign to any (finite or infinite) word is smaller than or equal to mλ
λ−1 . Hence, the difference

between the values of their runs on suffixes of w, starting at a position p, is smaller than or
equal to mλ

(λ−1)λp .



20 U. BOKER AND T. A. HENZINGER

Now, since B ε-approximates A over finite words, it follows that they have optimal runs
over every prefix of w, such that their difference is smaller than or equal to ε. Thus, after
a long enough prefix, of length p such that mλ

(λ−1)λp < c, the difference between the values

of A’s and B’s optimal runs on w must be smaller than c, leading to a contradiction.
A counter example for the converse is provided in Figure 2.

Following Lemma 5.3, it is enough to prove the correctness of the constructions with
respect to finite words, and the lower bounds with respect to infinite words.

Approximate determinization is useful for automata comparison, which is essential in
formal verification, as well as for game solving, which is essential in synthesis. We briefly
explain below how one can take advantage of approximate determinization for these purposes.

Approximate comparison of automata. Consider two nondeterministic automata A
and B. One can approximately solve, with respect to a precision ε > 0, the question of
whether for all words w, A(w) ≥ B(w). Now, what do we mean by “approximately solve”?

One may think that it allows to solve the question of whether for all words w, (B(w)−
A(w)) ≤ ε. However, this is not the case, as solving (B(w) − A(w)) ≤ ε is as difficult as
solving B(w) ≤ A(w): Given λ-NDAs A and B, and some constant ε, one may construct
an automaton B′, such that for all words w, B′(w) = B(w) + ε. This is done by adding a
constant weight c to all weights in B, where c = ελ−1

λ . (The infinite discounted sum of c,
with the discount factor λ, yields ε.) Then, B(w) ≤ A(w) if and only if (B′(w)−A(w)) ≤ ε.

By “approximately solve” we mean that we can reduce the uncertainty area to be
arbitrarily small: Given λ-NDAs A and B, and an arbitrary constant ε > 0, we provide a
“yes” or “no” answer, such that “no” means that A 6≥ B, and “yes” means that for all words
w, (B(w)−A(w)) ≤ ε. Note the there is an uncertainty area, in the size of ε, in the case
of a “yes”, meaning that for all words w, either A(w) ≥ B(w), or A(w) is almost as big as
B(w), lacking an ε.

We approximately solve, with respect to a precision ε > 0, the question of whether for
all words w, A(w) ≥ B(w), as follows.

• We generate deterministic automata A′ and B′ that ε
4 -approximate A and B, respectively.

• We construct an automaton C, such that or all words w, C(w) = B′(w)−A′(w). This is
done by taking C to be the product automaton of B′ and A′, where the weight of each
transition is the weight from B minus the weight from A. Note that for the nondeterministic
automata A and B, we cannot generate an automaton equivalent to B−A. (See Section 6.)
• We compute the value m = sup

w
C(w). Since C is deterministic, it can be solved using

linear programming techniques. (See, for example, [And06].)
• If m > ε

2 , we answer “no”, and otherwise we answer “yes”.

In the case that we answer “no”, we know that there is a word w, such that B′(w)−
A′(w) > ε

2 . Since B′ ε4 -approximates B and A′ ε4 -approximates A, it follows that B(w) −
A(w) > ε

2 −
ε
4 −

ε
4 = 0. Hence, A 6≥ B.

In the case that we answer “yes”, we know that for all words w, B′(w) − A′(w) ≤ ε
2 .

Since B′ ε
4 -approximates B and A′ ε

4 -approximates A, it follows that for all words w,
B(w)−A(w) ≤ ε

2 + ε
4 + ε

4 = ε. Hence, for all words w, (B(w)−A(w)) ≤ ε.
The equivalence and universality problems (asking whether for all words w, A(w) = B(w)

and A(w) ≤ 0, respectively) can be approximately solved similarly, up to any desired
precision.



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 21

Approximate game solving. Consider a two-player game G whose value (winning condi-
tion) is given by means of a nondeterministic automaton A. That is, G is a finite directed
graph with edge weights, whose states are partitioned into two disjoint sets S1 and S2,
belonging to player1 and player2, respectively. There is a distinguished initial state s0 from
which the plays of the game start. A play ρ is an infinite path in the graph, such that
player1 chooses the next state from a state in S1, and player2 chooses the next state from a
state in S2. A trace wρ of a play ρ is the infinite sequence of weights generated by ρ. The
value of a play ρ is defined to be A(wρ). The value of the game is the value of a play ρ, in
which both players follow their optimal strategy. (For more details on two-player games
with quantitative objectives, see, for example, [And06] and [CDHR10].)

For solving the game, meaning finding its value, one usually determinizes A into an
automaton D, takes the product of G and D, and finds optimal strategies for the game
G′ = G ×D. Now, in the case that D is not equivalent to A, but ε

2 -approximates it, the value
of G′ is guaranteed to be up to ε-apart from the value of G. When defining that player1

wins the game if the game’s value is above some threshold, we can approximately solve the
decision problem of whether player1 wins the game, up to any desired precision, analogously
to solving the automata-comparison problem, as elaborated above.

5.2. Approximation by Unfolding. We formalize below the naive approach of unfolding
the automaton computations up to a sufficient level.

The construction. Given an NDA A = 〈Σ, Q, qin, δ, γ, λ〉 and a parameter l ∈ N, we
construct a DDA D that is the depth-l unfolding of A. We later fix the value of l to obtain
a DDA that approximates A with a desired precision ε.

The DDA is D = 〈Σ, Q′, q′in, δ′, γ′, λ〉 where:

• Q′ = Σl; the set of words of length l.
• q′in = the empty word.
• δ′ = {(w, σ,w · σ)

∣∣ |w| ≤ l − 1 ∧ σ ∈ Σ} ∪ {(w, σ,w)
∣∣ |w| = l ∧ σ ∈ Σ}.

• For all w ∈ Σ≤l−1, and σ ∈ Σ, let γ′(w, σ,w · σ) = (A(w · σ)−A(w))/λ|w|; for all w ∈ Σl,
and σ ∈ Σ, let γ′(w, σ,w) = v+V

2 where v and V are the smallest and largest weights in
A, respectively.

The construction above yields an automaton whose state space might be doubly exponential
in the representation of the discount factor.

Theorem 5.4. Consider a precision ε = 2−p and an NDA A with a discount factor
λ = 1 + 2−k and maximal weight difference of m. Then applying the unfolding construction

on A, for a precision ε, generates a DDA D that ε-approximates A with up to 2Θ(2k(k+p+logm))

states.

Proof. Let l be the depth of A’s unfolding that is used for generating D. Then, for all words
w ∈ Σ≤l, the automataA andD agree, by definition, on the value of w, that isA(w) = D(w).

For longer, or infinite, words w ∈ Σ>l∪Σω, we have: D(w) = A(w[0 . . . l−1])+ v+V
2

∑|w|
i=l

1
λi

.

As v
∑|w|

i=l
1
λi
≤ A(w)−A(w[0 . . . l − 1]) ≤ V

∑|w|
i=l

1
λi

, we obtain the following:

|A(w)−D(w)| ≤ V − v
2

|w|∑
i=l

1

λi
≤ V − v

2

∞∑
i=l

1

λi
=
V − v

2

1

λl

∞∑
i=0

1

λi
=

m

2λl−1(λ− 1)
,



22 U. BOKER AND T. A. HENZINGER

where m = V − v is the largest weight difference in A.
Note that the above inequality is tight, in the sense that there is an automaton A and

(an infinite) word w, such that |D(w)−A(w)| = m
2λl−1(λ−1)

.

In order to compute the minimal unfolding depth l that guarantees a precision ε = 2−p

when determinizing an automaton with a discount factor λ = 1 + 2−k, we should solve the

following inequality m
2λl−1(λ−1)

= m2k−1

λl−1 = m2k−1

(1+2−k)l−1 ≤ 2−p.

Hence, m2k+p−1 ≤ (1 + 2−k)l−1. Therefore, (l − 1) log(1 + 2−k) ≥ k + p + log(m) − 1,

yielding that l ≥ k+p+log(m)−1
log(1+2−k)

+ 1.

By Lemma 5.1, we have log(1 + 2−k) is linear in 2−k. Hence, l ≥ Θ(2k(k+ p+ logm)).
The unfolding construction of D generates up to Σl states, implying that the determin-

istic automaton has up to 2Θ(2k(k+p+logm)) states.

5.3. Approximation by Gap Rounding. As the unfolding approach, analyzed in Sec-
tion 5.2, is doubly exponential in the discount factor, one may look for an alternative
approach that is singly exponential in the discount factor, in the precision, and in the
number of states of the original automaton. Indeed, we provide below such an approximation
scheme, by generalizing the determinization procedure of Section 3.1.

The main idea in Section 3.1 is to extend the subset construction by keeping a recoverable-
gap value to each element of the subset. Yet, it is shown in Section 4 that for every non-integral
rational factor the construction might not terminate. The problem with non-integral factors
is that the recoverable-gaps might be arbitrarily close to each other, implying infinitely many
gaps within the maximal bound of recoverable gaps.

Our approximation scheme generalizes the determinization procedure of Section 3.1
by rounding the stored gaps to a fixed resolution. Since there is a bound on the maximal
value of a recoverable gap, the fixed resolution guarantees the procedure’s termination. The
question is, however, how an unbounded number of gap rounding allows for the required
precision. The key observation is that the rounding is also discounted along the computation.
For a λ-NDA, where λ = 1 + 2−k, and a precision ε = 2−p, we show that a resolution of
2−(p+k−1) is sufficient. For an NDA whose maximal weight difference is m, the maximal
recoverable gap is below m2k+1. Hence, for an NDA with n states, the resulting DDA would
have up to 2n(p+2k+logm) states.

The construction is formalized below, and illustrated with an example in Figure 8.

The construction. Consider a discount factor λ = 1 + 2−k, with k > 0, and an NDA
A = 〈Σ, Q = 〈q1, . . . , qn〉, qin, δ, γ, λ〉, in which the maximal difference between the weights
is m. For simplicity, we extend γ with γ(〈qi, σ, qj〉) =∞ for every 〈qi, σ, qj〉 6∈ δ. Note that
our discounted-sum automata do not have infinite weights; it is only used as an internal
element of the construction.

For a precision ε = 2−p, with p > 0, we construct a DDA D = 〈Σ, Q′, q′in, δ′, γ′, λ〉 that

ε-approximates A. We first define the set G = {i2−(p+k−1)
∣∣ i ∈ N and i ≤ m2p+2k} ∪ {∞}

of recoverable-gaps. The ∞ element denotes a non-recoverable gap, and behaves as the
standard infinity element in the arithmetic operations that we will be using.

A state of D extends the standard subset construction by assigning a recoverable gap to
each state of A. That is, Q′ = {〈g1, . . . , gn〉

∣∣ for every 1 ≤ h ≤ n, gh ∈ G}.



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 23

The initial state of D is q′in = 〈g1, . . . , gn〉, where for every 1 ≤ i ≤ n, gi = 0 if qi = qin
and gi =∞ otherwise.

For bounding the number of possible states, the gaps are rounded to a resolution of
2−(p+k−1). Formally, for every number x ≥ 0, we define Round(x) = i2−(p+k−1), such that

i ∈ N and for every j ∈ N, |x− i2−(p+k−1)| ≤ |x− j2−(p+k−1)|.
For every state q′ = 〈g1, . . . , gn〉 ∈ Q′ and letter σ ∈ Σ, we define the transition function

δ(q′, σ) = q′′ = 〈x1, . . . , xn〉, and the weight function γ(〈q′, σ, q′′〉) = c as follows.

• For every 1 ≤ h ≤ n, we set ch := min{gj + γ(〈qj , σ, qh〉)
∣∣ 1 ≤ j ≤ n}

• c := min
1≤h≤n

(ch)

• For every 1 ≤ l ≤ n, xl := Round(λ(ch − c)). If xl ≥ m2k+1 then xl :=∞.

A:

D:

Gap roundig resolution is 2−(p+k−1) = 1
4

〈0,∞〉 〈0, 9
4
〉 〈0, 2〉

〈5, 0〉〈∞, 0〉 〈9, 0〉

Maximal recoverable gap is 2k+1 × (weight difference) = 4× 5
2

= 10

Required precision is ε = 2−p; Choosing p = 2, ε = 1
4

q1 q2
Discount factor is λ = 1 + 2−k; choosing k = 1, λ = 3

2

〈0, 3
2
〉 〈0, 3

4
〉

〈 9
4
, 0〉 〈 1

2
, 0〉

x2 = 0

a, b, 0

a, b,−1

x2 = 0

c2 = min(0 + 3
2
, 3
4
− 1) = − 1

4

x1 = Round( 3
2

(0− (− 1
4

)) = 1
2

c = min(0,− 1
4

) = − 1
4

For ‘a’:

c1 = min(0 + 0) = 0

a, b,−1a, b,−1

a, b,−1

a, b, 0a, 0

b, 0

a, b, 0

a, b,−1

a, b, 0 a, b,−1

a, 3
2

a, b,− 1
4

c1 = min(9 + 0) = 9

For ‘a’:

c = min(9,−1) = −1

c2 = min(9 + 3
2
, 0− 1) = −1

x1 = Round( 3
2

(9− (−1)) = 15 ∞

Figure 8: Determinizing the NDA A approximately into the DDA D. The gray bubbles
detail some of the intermediate calculations of the approximate-determinization
construction.

The correctness and the state complexity of the construction is formalized below.

Theorem 5.5. Consider a discount factor λ = 1 + 2−k and a precision ε = 2−p, for some
positive numbers p and k. Then for every λ-NDA A with n states and weight difference
of up to m, there is a λ-DDA that ε-approximates A with up to 2n(p+2k+logm) states. The
automata A and D may operate over finite words as well as over infinite words.



24 U. BOKER AND T. A. HENZINGER

Proof. For every such NDA A, we construct the DDA D as defined in the construction
above.

We show the correctness for finite words, implying, by Lemma 5.3, also the correctness
for infinite words. We start by proving the claim with respect to an infinite-state automaton
D′ that is constructed as above, except for not changing any gap to ∞. That is, the state
space of D′ is {〈g1, . . . , gn〉

∣∣ for every 1 ≤ h ≤ n, gh = i2−(p+k−1) for some i ∈ N}.
Afterwards, we shall argue that changing all gaps that exceed m2k+1 to ∞ does not harm
the correctness.

We use the following notations: upon reading a word w, the automaton D′ yields
the sequence c1, c2, . . . , c|w| of weights, and reaches a state 〈g1,w, . . . , gn,w〉. We denote

half the gap resolution, namely 2−(p+k), by r. Intuitively,
gh,w
λ|w|

+
∑|w|

i=1
ci
λi−1 stands for

the approximated cost of reaching the state qh upon reading the word w. We define for
every word w and 1 ≤ h ≤ n, the “mistake” in the approximated cost by M(h,w) =
gh,w
λ|w|

+
∑|w|

i=1
ci
λi−1 − cost(qh, w), and show by induction on the length of w that |M(h,w)| ≤∑|w|

i=1
r
λi

.
The assumptions obviously hold for the initial step, where w is the empty word and all

values are 0. As for the induction step, we assume they hold for w and show that for every
σ ∈ Σ, they hold for w·σ.

We first handle the case that M(x,w·σ) ≥ 0.
Recall that for every 1 ≤ x ≤ n, the actual cost of reaching qx is cost(qx, w ·σ) =

cost(qh, w) + γ(〈qh,σ,qx〉)
λ|w|

, for some 1 ≤ h ≤ n. By the construction, we have gx,w·σ ≤
λ(gh′,w + γ(〈qh′ , σ, qx〉) − c|w|+1) + r, for some 1 ≤ h′ ≤ n. (The state h′ is the “choice”
of the construction for the “best” state to continue with for reaching the state x upon
reading the word w·σ.) The states h and h′ need not be the same, yet, by the construction,
gh′,w+γ(〈qh′ , σ, qx〉) ≤ gh,w+γ(〈qh, σ, qx〉). Thus, gx,w·σ ≤ λ(gh,w+γ(〈qh, σ, qx〉)−c|w|+1)+r.

Therefore,

M(x,w·σ) =
gx,w·σ

λ|w|+1
+

|w|+1∑
i=1

ci
λi−1

− cost(qx, w·σ) ≤

≤
λ(gh,w + γ(〈qh, σ, qx〉)− c|w|+1) + r

λ|w|+1
+

|w|+1∑
i=1

ci
λi−1

−

−(cost(qh, w) +
γ(〈qh, σ, qx〉)

λ|w|
) =

=
gh,w

λ|w|
+

r

λ|w|+1
+

|w|∑
i=1

ci
λi−1

− cost(qh, w) =

= M(h,w) +
r

λ|w|+1
≤
|w|∑
i=1

r

λi
+

r

λ|w|+1
=

|w|+1∑
i=1

r

λi
.

We continue with the second case, where M(x,w·σ) ≤ 0. By the construction, we have
gx,w·σ ≥ λ(gh′,w + γ(〈qh′ , σ, qx〉)− c|w|+1)− r, for some 1 ≤ h′ ≤ n. (As in the previous case,
the state h′ stands for the “choice” of the construction for the “best” state to continue with
for reaching the state x upon reading the word w·σ.)



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 25

Then,

M(x,w·σ) =
gx,w·σ

λ|w|+1
+

|w|+1∑
i=1

ci
λi−1

− cost(qx, w·σ) ≥

≥
λ(gh′,w + γ(〈qh′ , σ, qx〉)− c|w|+1)− r

λ|w|+1
+

|w|+1∑
i=1

ci
λi−1

−

−(cost(qh, w) +
γ(〈qh, σ, qx〉)

λ|w|
) .

Since cost(qx, w·σ) = cost(qh, w)+ γ(〈qh,σ,qx〉)
λ|w|

, it follows that cost(qh, w)+ γ(〈qh,σ,qx〉)
λ|w|

≤
cost(qh′ , w) +

γ(〈qh′ ,σ,qx〉)
λ|w|

. (The accurate best path to reach the state x upon reading the

word w·σ goes through the state h, and not through the state h′.) Hence,

M(x,w·σ) ≥
λ(gh′,w + γ(〈qh′ , σ, qx〉)− c|w|+1)− r

λ|w|+1
+

|w|+1∑
i=1

ci
λi−1

−

−(cost(qh′ , w) +
γ(〈qh′ , σ, qx〉)

λ|w|
) =

=
gh′,w

λ|w|
− r

λ|w|+1
+

|w|∑
i=1

ci
λi−1

− cost(qh′ , w) =

= M(h′, w)− r

λ|w|+1
≥ −

|w|∑
i=1

r

λi
− r

λ|w|+1
= −

|w|+1∑
i=1

r

λi
.

We can now show that |D′(w)−A(w)| ≤ ε. Indeed, upon reading w, D′ reaches some

state q′ in which gh,w = 0, for some 1 ≤ h ≤ n. Thus, |
∑|w|

i=1
ci
λi−1 − cost(qh, w)| ≤ ε.

Assume that A(w) > D′(w). Then, since A(w) ≤ cost(qh, w), it follows that 0 ≤ A(w) −
D′(w) ≤ cost(qh, w) − D′(w) ≤ ε. Analogously, assume that D′(w) > A(w). Then, since
A(w) ≤ cost(qh, w), it follows that 0 ≤ D′(w)−A(w) ≤ D′(w)− cost(qh, w) ≤ ε.

It is left to show that |D(w)−A(w)| ≤ ε. The only difference between the construction
of D and of D′ is that the former changes all gaps above m(2k+1) to∞. Upon reading w, D′
ends in some state q′ in which gh,w = 0, for some 1 ≤ h ≤ n. By the construction of D′, there
is a sequence of gaps g1, . . . , g|w| = gh,w = 0, such that for every i, gi+1 ≥ λ(gi + x) − r,
where |x| ≤ m. We claim that D also contains this sequence of gaps. Indeed, assume,
by contradiction, that gi ≥ m(2k+1), for some i < |w|. Then, gi+1 ≥ λ(gi − m − r) =
(1+2−k)(gi−m−r) = gi−m−r+(2−k)(gi−m−r) ≥ gi−m−r+(2−k)(m(2k+1)−m−r) =
gi−m− r+ 2m− (2−k)(m+ r) > gi. Hence, the sequence of gaps is growing from position
i onwards, contradicting the assumption that the last gap in the sequence is 0.

5.4. Lower Bounds. The upper bound described in Section 5.3, for determinizing an NDA
A approximately, exponentially depends on three parameters: n, denoting the number of
states in A; k, representing the proximity of A’s discount factor to 1; and p, representing the
precision. We show below that exponential dependency on these three factors is unavoidable.



26 U. BOKER AND T. A. HENZINGER

A: λ = 3
2

q2

Σ = {‘− 1’, ‘− 2
3
’, ‘− 1

3
’, ‘0’, ‘ 1

3
’, ‘ 2

3
’}

q1 ‘v’, v e.g. ‘− 1’,−1Σ, 0

Figure 9: Every DDA that 2−p-approximates the NDA A has at least 2
b p−2
log3
c

states.

For showing dependency on the precision (p), as well as on the discount factor (k),
one can fix the other two parameters and show exponential dependency on the varying
parameter. This is formalized in Theorems 5.7 and 5.8.

As for the number of states (n), there is no absolute dependency – one may approximate
the non-deterministic automaton via the unfolding approach (Section 5.2), having no
dependency on n. Yet, the trade off is a double-exponential dependency on k. Thus, one
may check whether there is an exponential dependency on n, once p and k are fixed, and n
remains below O(2k). This is indeed the case, as shown in Theorem 5.9.

Intuitively, if a state of an NDA has two recoverable gaps that are different enough, over
two words that are short enough, then recovering them by the same suffix would yield two
values that are also different enough. Two such words must lead to two different states in a
deterministic automaton that properly approximates the NDA. Hence, the challenge is to
figure out an NDA whose states have as many such different recoverable gaps as possible.
Each of the three lower bounds brings a different challenge, depending on the parameter
that is not fixed (precision, discount factor, and number of states). A delicate analysis of the
recoverable gaps in the automata of Figures 9–11, provides the proofs of Theorems 5.7–5.9,
respectively.

For showing dependency on the precision, we start with a lemma, analyzing the recover-
able gaps of the NDA on which we will show the lower bound.

Lemma 5.6. Consider the NDA described in Figure 9. Then, for every i, l ∈ N, where
i ≤ 2l, there is a word ul,i ∈ Σl such that q2 has the recoverable gap of i

2l
over ul,i.

Proof. We prove the claim by induction on l. For l = 1, we have the words u1,0 = ‘0’, u1,1 =
‘1
3 ’, and u1,2 = ‘2

3 ’, for which q2’s gaps are 3
2×0 = 0

2 , 3
2×

1
3 = 1

2 , and 3
2×

2
3 = 2

2 , respectively.

For the induction step, consider a number j ≤ 2l+1, and let r = j mod 3.
When r = 0, we have the word ul+1,j = ul,j/3 · ‘0’, as gap(q2, ul+1,j) = 3

2(gap(q2, ul,j/3)−
0) = 3

2
j

3×2l
= j

2l+1 .

When r 6= 0, we check if (2l mod 3) is different from r. If it is, we have the word ul+1,j =

ul,(j+2l)/3 · ‘ − 1
3 ’, as gap(q2, ul+1,j) = 3

2( j+2l

3×2l
− 1

3) = j
2l+1 . Otherwise, (2l mod 3 = r) and

(2l+1 mod 3) 6= r. Then, in case that j ≤ 2l, we have the word ul+1,j = ul,(j+2l+1)/3 · ‘− 2
3 ’,

as gap(q2, ul+1,j) = 3
2( j+2l+1

3×2l
− 2

3) = j
2l+1 , and in the case that 2l < j ≤ 2l+1, we have the

word ul+1,j = ul,(j−2l)/3 · ‘1
3 ’, as gap(q2, ul+1,j) = 3

2( j−2l

3×2l
+ 1

3) = j
2l+1 .

All these gaps of q2 do not exceed 1, thus they can be recovered by adding ‘− 1’ at the
end of the words.

We continue with the lower bound with respect to the precision.



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 27

Ak:
λ = 1 + 2−k = 1 + 1

K

q1 q2
‘− 1’,−1Σ, 0
‘1’, 1

Figure 10: The family of NDAs, such that every DDA (with any discount factor) that 1
8 -

approximates Ak has at least 2k−1 states.

Theorem 5.7. There is an NDA A with two states, such that for every ε = 2−p > 0, every

DDA (with any discount factor) that ε-approximates A has at least 2
b p−2
log 3
c

states.

Proof. Consider the NDA A described in Figure 9, and let D be a DDA (with any discount

factor) that ε-approximates A, where ε = 2−p. We claim that D has at least 2
b p−2
log 3
c

states.
Intuitively, if q2 has different recoverable gaps over two short enough words, then re-

covering them would yield two values that are more than ε apart. Two such words must
lead to two different states in a deterministic automaton that ε-approximates A.

Formally, let l = b p−2
log 3c. By Lemma 5.6, for every i ≤ 2l, there is a word ul,i, such that

gap(q2, ul,i) = i
2l

. We show below that for every i, j ≤ 2l, such that i 6= j, D reaches two

different states upon reading ul,i and ul,j , which implies that D has at least 2
(b p−2

log 3
c)

states.
Assume, by contradiction, two different words, u = ul,i and u′ = ul,j , such that D

reaches the same state s upon reading them. Let w = u · ‘0’ω and w′ = u′ · ‘0’ω. Since
A(w) = A(w′) = 0 and D 2−p-approximates A, it follows that |D(w) − D(w′)| ≤ 2 × 2−p.

By the determinism of D, we have D(w) = D(u) + Ds(‘0’ω)
λl

and D(w′) = D(u′) + Ds(‘0’ω)
λl

.

Hence, |D(u)−D(u′)| ≤ 2× 2−p = 2(−p+1).
Now, consider the words z = u · −1ω and z′ = u′ · ‘ − 1’ω. Since both gap(q2, u) and

gap(q2, u
′) are recoverable by concatenating ‘ − 1’ω, it follows that the best run of A over

both z and z′ goes via q2. Thus, |A(z)−A(z′)| = |gap(q2,u)−gap(q2,u′)|
λl

≥ 1
2l
× 2l

3l
= 1

3l
> 2−(p−2).

Since D 2−p-approximates A, it follows that |D(z)−D(z′)| > 2−(p−2) − 2× 2−p = 2(−p+1).

By the determinism of D, we have |D(u)−D(u′)| > 2−(p−1).

We have shown that |D(u)−D(u′)| is both smaller and bigger than 2(−p+1), contradicting
the assumption that D reaches the same state upon reading two different words ul,i and

ul,j . Hence, D has at least 2
(b p−2

log 3
c)

states.

We now turn to show the lower bound with respect to the discount factor.

Theorem 5.8. There is a family of NDAs, Ak, for k ≥ 2, with two states and discount
factor 1 + 2−k over an alphabet of two letters, such that every DDA (with any discount
factor) that 1

8 -approximates Ak has at least 2k−1 states.

Proof. For convenience, we set K = 2k. For every k ≥ 2, consider the NDA Ak, with
discount factor λ = 1 + 2−k = 1 + 1

K , described in Figure 10, and let D be a DDA (with

any discount factor) that 1
8 -approximates Ak. We claim that D has at least 2k−1 states.

Intuitively, if q2 has two recoverable gaps that are different enough, over two words
that are short enough, then recovering them would yield two values that are also different



28 U. BOKER AND T. A. HENZINGER

A:

q1 . . .q2 qn

λ = 1 + 2−k

Σ = {‘0’, ‘− 1i’, ‘1i’
∣∣ i ∈ {1, . . . , n}}

q0Σ, 0

γ(qi, ‘1j ’, qi) = 1 if i = j and 0 otherwise

For every i, j ≥ 1:

γ(qi, ‘0’, qi) = 0

γ(qi, ‘− 1j ’, qi) = −1 if i = j and 0 otherwise

Figure 11: The family of NDAs, such that every DDA (with any discount factor) that 1
12 -

approximates An has at least 2n states.

enough. Two such words must lead to two different states in a deterministic automaton
that 1

8 -approximates Ak.
Formally, for every 1 ≤ i ≤ K

2 , consider the words ui = ‘1’i · ‘0’(K/2)−i. We claim
that q2 has recoverable gaps over all these words, and that the difference between the
costs of reaching q2 over each two words is at least 1

2 . Indeed, gap(q2, ui) =
∑i

j=1 λ
j =∑i

j=1(1 + 1
K )j . By Lemma 5.1, we have (1 + 1

K )K < 3, implying that (1 + 1
K )K/2 <

√
3.

Thus, gap(q2, ui) <
∑K/2

j=1 (1 + 1
K )K/2 < (K/2)

√
3 < K. The maximal recoverable gap of q2

is
∑∞

i=0( 1
λi

) = λ
λ−1 =

1+ 1
K

1
K

= K + 1, implying that q2 has a recoverable gap over ui. As for

the costs of reaching q2 over different words, consider the words ui and uj , where i 6= j. We
have |cost(q2, ui)− cost(uj)| ≥ 1

(1+ 1
K

)K/2
> 1√

3
> 1

2 .

We continue with analyzing the runs of D on these words. Assume, by contradiction,
two different words, ui and uj , such that D reaches the same state s upon reading them. Let
w = ui · ‘0’ω and w′ = uj · ‘0’ω. Since A(w) = A(w′) = 0 and D 1

8 -approximates A, it follows

that |D(w)−D(w′)| ≤ 2× 1
8 = 1

4 . By the determinism of D, we have D(w) = D(ui)+ D
s(‘0’ω)
λl

and D(w′) = D(uj) + Ds(‘0’ω)
λl

. Hence, |D(ui)−D(uj)| ≤ 1
4 .

Now, consider the words z = ui · ‘− 1’ω and z′ = uj · ‘− 1’ω. Since both gap(q2, ui) and
gap(q2, uj) are recoverable by concatenating ‘ − 1’ω, it follows that the best run of A over
both z and z′ goes via q2. Thus, |A(z) − A(z′)| = |cost(q2, ui) − cost(q2, uj)| > 1

2 . Since

D 1
8 -approximates A, it follows that |D(z) − D(z′)| > 1

2 − 2 × 1
8 = 1

4 . By the determinism

of D, we have |D(u)−D(u′)| > 1
4 .

We have shown that |D(ui) − D(uj)| is both smaller and bigger than 1
4 , contradicting

the assumption that D reaches the same state upon reading two different words ui and uj .

Hence, D has at least 2K/2 = 2p−1 states.

We conclude with the lower bound with respect to the number of states, which also
depends on the discount factor.

Theorem 5.9. For every k ≥ 3, there is a family of NDAs, An, for n ≤ 2k, with n + 1
states and discount factor 1 + 2−k over an alphabet of size 2n + 1, such that every DDA
(with any discount factor) that 1

12 -approximates An has at least 2n states.



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 29

Proof. For convenience, we set K = 2k. For every k ≥ 2 and n ≤ 2k, consider the NDA An,
with discount factor λ = 1+2−k = 1+ 1

K , described in Figure 11, and let D be a DDA (with

any discount factor) that 1
12 -approximates An. We claim that D has at least 2n states.

Intuitively, we describe 2n words of length n, encoding all binary combinations of n
bits. The cost of reaching a state qi over a word u is above 1

3 if the ith bit in u is 1, and
zero otherwise. These words are recoverable for all states, implying that a deterministic
automaton that 1

12 -approximates A should reach a different state upon reading each of the
2n words.

Formally, for every binary word b ∈ {0, 1}n of length n, we define the word ub ∈ Σn, by
setting the ith letter of ub to ‘1i’ if the ith letter of b is 1, and to ‘0’ otherwise. We denote
this set of Σn-words by U .

For every 1 ≤ i ≤ n and u ∈ U , we have cost(qi, u) = 0 if u[i] = ‘0’ and 1
λi

otherwise.

By Lemma 5.1, we have (1 + 1
K )K < 3. Since, i ≤ n ≤ K, it follows that cost(qi, u) > 1

3 if
u[i] 6= ‘0’. In addition, we have that for every 1 ≤ i ≤ n and u ∈ U , the gap of qi over u is
recoverable by concatenating ‘− 1i’

ω, as gap(qi, u) ≤ λn ≤ (1 + 1
K )K < 3 and the value of

concatenating ‘− 1i’
ω from the nth position is 1

λn
∑∞

j=1 λ
j ≥ 1

3(K + 1) ≥ 1
3(23 + 1) = 3.

We continue with analyzing the runs of D on these words. Assume, by contradiction,
two different words, u, u′ ∈ U , such that D reaches the same state s upon reading them. Let
w = u · ‘0’ω and w′ = u′ · ‘0’ω. Since A(w) = A(w′) = 0 and D 1

12 -approximates A, it follows

that |D(w)−D(w′)| ≤ 2× 1
12 = 1

6 . By the determinism of D, we have D(w) = D(u)+D
s(‘0’ω)
λl

and D(w′) = D(u′) + Ds(‘0’ω)
λl

. Hence, |D(ui)−D(uj)| ≤ 1
6 .

Now, since u 6= u′, there is some index 1 ≤ i ≤ n, such that u[i] = ‘0’ and u′[i] = ‘1i’,
or vice versa. Consider the words z = u · (−1i)

ω and z′ = u′ · ‘ − 1i’
ω. One can observe

that for every 0 ≤ j ≤ n, such that j 6= i, we have cost(qj , u) ≥ 0, cost(qj , u
′) ≥ 0,

and Aqj (‘ − 1’ω) = 0. On the other hand, A(z) < 0 and A(z′) < 0, going via qi. Thus,
|A(z)−A(z′)| = |cost(qi, u)−cost(qi, u

′)| > 1
3 . Since D 1

12 -approximates A, it follows that

|D(z)−D(z′)| > 1
3 − 2× 1

12 = 1
6 . By the determinism of D, we have |D(u)−D(u′)| > 1

6 .

We have shown that |D(u) − D(u′)| is both smaller and bigger than 1
6 , contradicting

the assumption that D reaches the same state upon reading two different words u and u′.
Hence, D has at least 2n states.

6. Closure Properties

Discounted-sum automata realize a function from words to numbers. Hence, one may wish
to consider their closure under arithmetic operations. The operations are either between
two automata, having the same discount factor, as addition and taking the minimum, or
between an automaton and a scalar, as multiplication by a positive rational number c.

Formally, given automata A and B, and a scalar 0 ≤ c ∈ Q, we define

• C = min(A,B) if for every word w, C(w) = min(A(w),B(w)).
• C = max(A,B) if for every word w, C(w) = max(A(w),B(w)).
• C = A+ B if for every word w, C(w) = A(w) + B(w).
• C = A− B if for every word w, C(w) = A(w)− B(w).
• C = A · c if for every word w, C(w) = c · A(w).
• C = A · (−1) if for every word w, C(w) = −A(w).



30 U. BOKER AND T. A. HENZINGER

Class � Operation min max + − ·c, c ≥ 0 ·(−1)

NDAs 3 7 3 7 3 7

DDAs 7 3

Integral NDAs 3

Table 1: Closure of discounted-sum automata under arithmetic operations.

We consider the class of complete NDAs, as well as two of its subclasses: DDAs and
integral NDAs.

The closure properties, summarized in Table 1, turn out to be the same for automata
over finite words and over infinite-words. By arguments similar to those of Lemma 3.3’s
proof, it is enough to prove the positive results with respect to automata over finite words
and the negative results with respect to automata over infinite words.

Some of the positive results are straightforward, as follows.

• Nondeterministic: The automaton that provides the minimum between two automata is
achieved by taking the union of the input automata, addition by taking the product of the
input automata and adding the corresponding weights, and multiplication by a positive
scalar c is achieved by multiplying all weights by c.
• Deterministic: Addition/subtraction is achieved by taking the product of the input

automata and adding/subtracting the corresponding weights. Multiplication by (positive
or negative) scalar c is achieved by multiplying all weights by c.
• Discount factor ∈ N: Since these automata can always be determinized, they obviously

enjoy the closure properties of both the deterministic and non-deterministic classes.

All the negative results can be reduced to the max operation, as follows. Closure under sub-
traction implies closure under (−1)-multiplication, by subtracting the given automaton from
a constant 0 automaton. For nondeterministic automata, closure under (−1)-multiplication
implies closure under the max operation, by multiplying the original automata by (−1)
and taking their minimum. As for deterministic automata, closure under the min and max
operations are reducible to each other due to the closure under (−1)-multiplication.

It is left to show the results with respect to the max operation. We start with the classes
of deterministic and nondeterministic automata.

Theorem 6.1. NDAs and DDAs are not closed under the max operation.

Proof. We prove a stronger claim, showing that there are two DDAs, A and B, defined in
Figure 12, for which there is no NDA equivalent to max(A,B). Intuitively, we show that
the recoverable-gap between A and B can be arbitrarily small, and therefore, by pumping-
arguments, an NDA for max(A,B) cannot be of a finite size.

Assume, by contradiction, an NDA C with n states equivalent to max(A,B). The value
of A over every word is obviously 0. Thus, for every infinite word w, C(w) = B(w) if
B(w) > 0 and 0 otherwise.

For a finite word u, we shall refer to λ|u|B(u) as the gap of B over u, denoted gap(B, u).
Intuitively, this gap stands for the weight that B should save over a suffix z for having a
negative value over the whole word. That is, B(uz) < 0 if and only if B(z) < −gap(B, u).
Within this proof, λ is fixed to 5

2 .
A key observation is that the gap of B can be arbitrarily small. Specifically, we show

that for every natural numbers k ≥ 3 and j ≤ d2k

5 e, there is a finite word uj,k such that



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 31

A: B:

λ = 5
2 Σ = { ‘−1’, ‘− 1

2
’, ‘− 1

4
’, ‘− 1

8
’, ‘0’, ‘ 2

5
’ }

‘v’, v (e.g. ‘−1’, −1 )Σ, 0

Figure 12: The DDAs A and B, for which there is no NDA equivalent to max(A,B).

gap(B, uj,k) = 5j
2k

. It goes by induction on k. For k = 3, it holds with u0,3 =‘0’, u1,3 =‘2
5 ’

‘−1
2 ’ ‘−1’, and u2,3 =‘2

5 ’ ‘−1
2 ’. As for the induction step, consider a number 0 ≤ j ≤ d2k+1

5 e.
One may verify that multiplying 2k by each of 1, 1

2 ,
1
4 ,

1
8 , and 0, provides a different reminder

when divided by 5. Hence, there is a number v ∈ {−1,−1
2 ,−

1
4 ,−

1
8 , 0} and a natural

number j′ ≤ d2k

5 e such that j′ = j−v2k

5 . Thus, we can have, by the induction assumption,

the required word uj,k+1, by uj,k+1 = uj′,k‘v’ , as gap(B, uj,k+1) = 5
2(gap(B, uj′,k) + v) =

5
2(5j′

2k
+ v) = 5

2( j−v2k

2k
+ v) = 5j

2k+1 .

By the above observation, there is a finite word u, such that 1
λ2n

< gap(B, u) < 1
λn . We

define the infinite word w = u‘0’n ‘−1’ ‘0’ω. Since a 0-weighted letter multiplies the gap by
λ, we get that 0 < gap(B, u‘0’n) < 1, and therefore B(w) < 0 and C(w) = 0.

Let r be an optimal run of C on w. Since C has only n states, there is a state q of C
and two positions |u| ≤ p1 < p2 < |u| + n, such that r visits q on both p1 and p2. Let w1

and w2 be the prefixes of w of lengths p1 and p2, respectively. Let z be the suffix of w after
w2, that is w = w2z. Let r1, r2 and rz be the portions of r on w1, w2 and z, respectively.

Let v1 and v2 be the values of r1 and r2, respectively, and define g1 = λp1v1 and
g2 = λp2v2. Let vz be the value of a run equivalent to rz. Since the value of r is 0, we have
that v2 + vz

λp2 = 0, and therefore, vz = −g2.
We shall reach a contradiction by showing that g1 6< g2, g1 6> g2, and g1 6= g2. Indeed:

• If g1 < g2 then there is a run r′ = r1rz of C on the word w′ = w1z, whose value is
v1 + vz

λp2 = g1+vz
λp2 . However, since g1 < g2 = −vz, it follows that the value of C on w′ is

negative, which leads to a contradiction.
• If g1 > g2 then there is a negative-valued run of C on the word w1‘0’2(p2−p1)z, analogously

to the previous case.
• If g1 = g2 then there is a 0-valued run of C on the word w′ = w1‘0’2nz, however B(w′) > 0,

leading to a contradiction.

We continue with the class of automata with an integral factor.

Theorem 6.2. For every λ ∈ N, the class of λ-NDAs is closed under the max operation.

Proof. Consider a discount-factor 1 < λ ∈ N and two λ-NDAs, A and B. By Theorem 3.1, A
and B can be determinized to equivalent λ-DDAs. Thus, we may only consider deterministic
automata. Since deterministic automata are closed under (−1)-multiplication, we may also
consider the min operation rather than the max operation.

The construction of a DDA C equivalent to min(A,B) is analogous to the determiniza-
tion construction of Section 3.1, with the difference of extending automata-product rather
than the subset-construction. Namely, we iteratively construct the product of A and B,



32 U. BOKER AND T. A. HENZINGER

where a state of C contains a state ofA and a state of B, together with their recoverable-gaps.
That is, for a state p of A and a state q of B, a state c of C is of the form c = 〈〈p, gp〉, 〈q, gq〉〉.
When A and B read a finite word u and reach the states p and q, respectively, we have that
gp = λ|u|(A(u) − min(A(u),B(u))) and gq = λ|u|(B(u) − min(A(u),B(u))). Once a gap is
too large, meaning that it is bigger than twice the maximal difference between a weight in
A and a weight in B, it is changed to ∞.

The termination and correctness proofs of the above construction are analogous to the
proofs of Lemmas 3.2 and 3.4.

7. Conclusion

Recently, there has been a considerable effort to extend formal verification from the Boolean
setting to a quantitative one. Automata theory plays a key role in formal verification,
and therefore quantitative automata, such as limit-average automata and discounted-sum
automata, play a central role in quantitative formal verification. However, of the basic
automata questions underlying a verification task, namely, emptiness, universality, and
inclusion, only emptiness is known to be solvable for these automata. The other questions
are either undecidable, as is the case with limit-average automata, or not known to be
decidable, as is the case with discounted-sum automata.

We showed that discounted-sum automata with integral discount factors form a robust
class, having algorithms for all the above questions, being closed under natural composition
relations, such as min, max, addition and subtraction, and allowing for determinization.
For discounted-sum automata with a nonintegral factor, we showed that they can be
determinized approximately with respect to any required precision, which is not the case
with other quantitative automata, such as sum, average, and limit-average automata. Hence,
we find the class of discounted-sum automata a promising direction in the development of
formal quantitative verification.

Acknowledgement

We thank Laurent Doyen for great ideas and valuable help, and the anonymous reviewers
for their very helpful comments and suggestions.

References

[ABK11] S. Almagor, U. Boker, and O. Kupferman. What’s decidable about weighted automata? In ATVA,
volume 6996 of LNCS, pages 482–491, 2011.

[AKL11] B. Aminof, O. Kupferman, and R. Lampert. Rigorous approximated determinization of weighted
automata. In Proc. of LICS, pages 345–354, 2011.

[And06] D. Andersson. An improved algorithm for discounted payoff games. In Proc. of ESSLLI Student
Session, pages 91–98, 2006.

[BGW01] A. L. Buchsbaum, R. Giancarlo, and J. Westbrook. An approximate determinization algorithm
for weighted finite-state automata. Algorithmica, 30(4):503–526, 2001.

[BH11] U. Boker and T. A. Henzinger. Determinizing discounted-sum automata. In Proc. of CSL,
volume 12 of LIPIcs, pages 82–96, 2011.

[BH12] U. Boker and T. A. Henzinger. Approximate determinization of quantitative automata. In Proc.
of FSTTCS, volume 18 of LIPIcs, pages 362–373, 2012.

[CDH09] K. Chatterjee, L. Doyen, and T. A. Henzinger. Alternating weighted automata. In Proc. of FCT,
volume 5699 of LNCS, pages 3–13, 2009.



EXACT AND APPROXIMATE DETERMINIZATION OF DISCOUNTED-SUM AUTOMATA 33

[CDH10a] K. Chatterjee, L. Doyen, and T. A. Henzinger. Expressiveness and closure properties for quanti-
tative languages. Logical Methods in Computer Science, 6(3), 2010.

[CDH10b] K. Chatterjee, L. Doyen, and T. A. Henzinger. Quantitative languages. ACM Trans. Comput.
Log., 11(4), 2010.

[CDHR10] K. Chatterjee, L. Doyen, T. A. Henzinger, and J. F. Raskin. Generalized mean-payoff and energy
games. In FSTTCS, volume 8 of LIPIcs, pages 505–516, 2010.

[dAHM03] L. de Alfaro, T. A. Henzinger, and R. Majumdar. Discounting the future in systems theory. In
Proc. of ICALP, volume 2719 of LNCS, pages 1022–1037, 2003.

[DDG+10] A. Degorre, L. Doyen, R. Gentilini, J. F. Raskin, and S. Torunczyk. Energy and mean-payoff
games with imperfect information. In Proc. of CSL, volume 6247 of LNCS, pages 260–274, 2010.

[DK06] M. Droste and D. Kuske. Skew and infinitary formal power series. Theor. Comput. Sci., 366(3):199–
227, 2006.

[DKV09] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Springer Publishing
Company, Incorporated, 2009.

[FGR12] E. Filiot, R. Gentilini, and J. F. Raskin. Quantitative languages defined by functional automata.
In CONCUR, volume 7454 of LNCS, pages 132–146, 2012.

[GZ07] H. Gimbert and W. Zielonka. Limits of multi-discounted markov decision processes. In Proc. of
LICS, pages 89–98, 2007.

[Moh97] M. Mohri. Finite-state transducers in language and speech processing. Computational Linguistics,
23:269–311, 1997.

[MTZ10] O. Madani, M. Thorup, and U. Zwick. Discounted deterministic markov decision processes and
discounted all-pairs shortest paths. ACM Transactions on Algorithms, 6(2), 2010.

[ZP96] U. Zwick and M.S. Paterson. The complexity of mean payoff games on graphs. Theoretical
Computer Science, 158:343–359, 1996.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany


	1. Introduction
	Related work

	2. Discounted-Sum Automata
	3. Determinizability of Integral Discounted-Sum Automata
	3.1. The Construction
	3.2. Termination and Correctness
	3.3. State Complexity
	Dependency on the number of states
	Dependency on the weights
	Dependency on the combination of states and weights

	4. Nondeterminizability of Nonintegral Discounted-Sum Automata
	4.1. Complete Automata
	4.2. Incomplete Automata

	5. Approximate Determinization
	5.1. Approximate Automata
	Approximate comparison of automata
	Approximate game solving
	5.2. Approximation by Unfolding
	The construction
	5.3. Approximation by Gap Rounding
	The construction
	5.4. Lower Bounds

	6. Closure Properties
	7. Conclusion
	Acknowledgement
	References

